partitura
Release 1.0.0

Oct 03, 2022

Contents

1 Introduction

1.1 Supported file types L e e e e e e e e e e e
1.2 Conceptual OVerview o i e e e
1.3 Relationtomusic2l e e e e e e e e e e

2 Usage
2.1 Quick start: Reading note information froma MIDIfile
2.2 Importing MusicXML L e
2.3 Displaying the typeset part L e e e e e e
2.4 Exportingascoreto MusicXML L e e e e
2.5 Viewingthecontents of ascore L e e e e e e e e e
2.6 Extracting note information fromaPart 0oL oo
2.7 Tterating over arbitrary musical objectso e
2.8 Creating amusical scoreby hand L
2.9 Adding Measures oo e e e e e e e e e e e e e
2.10 Spliting up NOtES USING S . .« « v v v v v v e
2.11 Removing elements i e e e e e e e e e
2.12 Importing MIDIfiles o e e e e e
2.13 Music Analysis e e e e e e

3 Index

4 partitura

5 partitura.score

6 partitura.performance

7 partitura.musicanalysis

8 partitura.utils

NN =

0NN NN N W W

15

17

19

21

23

25

CHAPTER 1

Introduction

The principal aim of the partitura package is to handle richly structured musical information as conveyed by modern
staff music notation. It provides a much wider range of possibilities to deal with music than the more reductive (but
very common) pianoroll-oriented approach inspired by the MIDI standard.

Specifically, the package allows for representing a variety of information in musical scores beyond the onset, duration
and MIDI pitch numbers of notes, such as:

* pitch spellings,
 symbolic duration categories,
* and voicing information.
Moreover, it supports musical notions that are not note-related, like:
* measures,
* tempo indications,
* performance directions,
¢ repeat structures,
* and time/key signatures.

In addition to handling score information, the package can load MIDI recordings of performed scores, and alignments
between scores and performances.

1.1 Supported file types

Musical data can be loaded from and saved to MusicXML and MIDI files. Furthermore, partitura uses MuseScore as a
backend to load files in other formats, like MuseScore, MuseData, and GuitarPro. This requires a working installation
of MuseScore on your computer. MEI format is currently not supported, but support is planned for a future release.

Score-performance alignments can be read from different file types by partitura. Firstly it supports reading from the
Matchfile format used by the publicly available Vienna4x22 piano corpus research dataset. Secondly there is read
support for Match and Corresp files produced by Nakamura’s music alignment software.

https://musescore.org/
https://repo.mdw.ac.at/projects/IWK/the_vienna_4x22_piano_corpus/data/index.html
https://midialignment.github.io/demo.html

partitura, Release 1.0.0

1.2 Conceptual Overview

This section offers some conceptual and design considerations that may be helpful when working with the package.

1.2.1 Representing score information

The package defines a musical ontology to describe musical scores that roughly follows the elements defined by
the MusicXML specification. More specifically, the elements of a musical score are represented as a collection of
instances of classes like Note, Measure, Slur, and Rest. These instances are attached to an instance of class Part,
which corresponds to the role of an instrument in a musical score. A part may contain one or more staffs, depending
on the instrument.

In contrast to MusicXML documents, where musical time is largely implicit, time plays a crucial role in the represen-
tation of scores in partitura. Musical elements are associated to a Part instance by specifying their start (and possibly
end) times. The Part instance thus acts as a timeline consisting of a number of discrete timepoints, each of which holds
references to the musical elements starting and ending at that time. The musical elements themselves contain refer-
ences to their respective starting and ending timepoints. Other than that, cross-references between musical elements
are used sparingly, to keep the API simple.

Musical elements in a Part can be filtered by class and iterated over, either from a particular timepoint onward or
backward, or within a specified range. For example to find the measure to which a note belongs, you would iterate
backwards over elements of class Measure that start at or before the start time of the note and select the first element
of that iteration.

1.2.2 Score vs. performance

Although the MIDI format can be used to represent both score-related (key/time signatures, tempo) and performance-
related information (expressive timing, dynamics), partitura regards a MIDI file as a representation of either a a
score or a performance. Therefore is has separate functions to load and save scores (load_score_midi (),
save_score_midi ())and performances (Load_performance_midi (), save_performance_midi ()).
load_score_midi () offers simple quantization for unquantized MIDIs but in general you should not expect a
MIDI representation of a performance to be loaded correctly as a Part instance.

1.3 Relation to music21

The music21 package has been around since 2008, and is one of the few python packages available for working with
symbolic musical data. It is both more mature and more elaborate than partitura. The aims of partitura are different
from and more modest than those of music21, which aims to provide a toolkit for computer-aided musicology. Instead,
partitura intends to provide a convenient way to work with symbolic musical data in the context of problems such as
musical expression modeling, or music generation. Although it is not the main aim of the package to provide music
analysis tools, the package does offer functionality for pitch spelling, voice assignment and key estimation.

2 Chapter 1. Introduction

http://usermanuals.musicxml.com/MusicXML/MusicXML.htm

CHAPTER 2

Usage

In this Section we demonstrate basic usage of the package.

2.1 Quick start: Reading note information from a MIDI file

Before we present more in-depth usage of the package, we cover the common use case of reading note information
from a MIDI file. The function midi_to_notearray () does exactly that: It loads the note information from the
MIDI file MIDI into a structured numpy array with attributes onset (in seconds), duration (in seconds), pitch, velocity,
and ID (automatically generated). For the purpose of this example we use a small MIDI file that comes with the
partitura package. The path to the example MIDI file is stored as partitura.EXAMPLE_MIDI.

>>> import partitura
>>> path_to_midifile = partitura.EXAMPLE_MIDI
>>> note_array = partitura.midi_to_notearray (path_to_midifile)
>>> note_array # doctest: +NORMALIZE_ WHITESPACE
array ([(0., 2., 69, 64, 0, 1, 'n0'"),

(., 1., 72, 64, 0, 2, 'nl"),

(1., 1., 76, 64, 0, 2, 'n2")1,

dtype=[('onset_sec', '<f4'),

('duration_sec', '<f4'),
("pitch', '<id"),
('velocity', '<i4d'"),
('track', '<i4d'"),
('channel', '<i4d'"),
('id', '<U256")1)

The individual fields can be accessed using the field names as strings, e.g.:

>>> note_array["onset_sec"] # doctest: +NORMALIZE_WHITESPACE
array ([0., 1., 1.1, dtype=float32)

To access further information from MIDI files, such as time/key signatures, and control changes, see Importing MIDI
files.

https://numpy.org/doc/stable/user/basics.rec.html

partitura, Release 1.0.0

2.2 Importing MusicXML

As an example we take a MusicXML file with the following contents:

<?xml version='1l.0'"' encoding='UTF-8'?>
<!DOCTYPE score-partwise PUBLIC
"-//Recordare//DTD MusicXML 3.1 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">
<score—-partwise>
<part-list>
<score-part id="P1">
<part-name>Piano</part—name>
</score-part>
</part-list>
<part id="P1">

<measure number="1">
<attributes>
<divisions>12</divisions>
<time>
<beats>4</beats>
<beat-type>4</beat-type>
</time>
</attributes>
<print new-page="yes" new-system="yes"/>
<note id="n01">
<pitch>
<step>A</step>
<octave>4</octave>
</pitch>
<duration>48</duration>
<voice>1l</voice>
<type>whole</type>
<staff>2</staff>
</note>
<backup>
<duration>48</duration>
</backup>
<note id="r01">
<rest/>
<duration>24</duration>
<voice>2</voice>
<type>half</type>
<staff>1</staff>
</note>
<note id="n02">
<pitch>
<step>C</step>
<octave>5</octave>
</pitch>
<duration>24</duration>
<voice>2</voice>
<type>half</type>
<staff>1</staff>
</note>
<note id="n03">
<chord/>

(continues on next page)

Chapter 2. Usage

partitura, Release 1.0.0

(continued from previous page)

<pitch>
<step>E</step>
<octave>5</octave>

</pitch>

<duration>24</duration>

<voice>2</voice>

<type>half</type>

<staff>1</staff>

</note>
</measure>
</part>
</score-partwise>

To load the score in python we first import the partitura package:

>>> import partitura

For convenience a MusicXML file with the above contents is included in the package. The path to the file is stored as
partitura.EXAMPLE_MUSICXML, so that we load the above score as follows:

>>> path_to_musicxml = partitura.EXAMPLE_MUSICXML
>>> part = partitura.load_musicxml (path_to_musicxml)

2.3 Displaying the typeset part

The partitura.render () function displays the part as a typeset score:

’>>> partitura.render (part)

Piano

This should open an image of the score in the default image viewing application of your desktop. The function requires
that either MuseScore or lilypond is installed on your computer.

2.4 Exporting a score to MusicXML

The partitura.save_musicxml () function exports score information to MusicXML. The following line saves
part to a file mypart.musicxml:

’>>> partitura.save_musicxml (part, 'mypart.musicxml')

2.3. Displaying the typeset part 5

https://musescore.org/
http://lilypond.org/

partitura, Release 1.0.0

2.5 Viewing the contents of a score

The function 1oad_musicxml () returns the score as a Part instance. When we print it, it displays its id and
part-name:

>>> print (part)
Part id="P1" name="Piano"

To see all of the elements in the part at once, we can call its pretty () method:

>>> print (part.pretty())
Part 1d="P1" name="Piano"

I— TimePoint t=0 quarter=12
L— starting objects
0--48 Measure number=1
0--48 Note id=n0l voice=1 staff=2 type=whole pitch=A4
0--48 Page number=1
0--24 Rest id=r01l voice=2 staff=1 type=half
0--48 System number=1
0-- TimeSignature 4/4
— TimePoint t=24 quarter=12
ending objects
0--24 Rest id=r01 voice=2 staff=1 type=half

starting objects

k: 24--48 Note 1d=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note 1d=n03 voice=2 staff=1 type=half pitch=E5

‘— TimePoint t=48 quarter=12
L— ending objects

0-—-48 Measure number=1

0--48 Note id=n0l voice=1 staff=2 type=whole pitch=A4
24--48 Note 1d=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note i1d=n03 voice=2 staff=1 type=half pitch=E5
0--48 Page number=1

0--48 System number=1

This reveals that the part has three time points at which one or more musical objects start or end. At =0 there are
several starting objects, including a TimeSignature, Measure, Page, and System.

2.6 Extracting note information from a Part

The notes in this part can be accessed through the notes property:

>>> part.notes
[<partitura.score.Note object at 0x...>,

(continues on next page)

6 Chapter 2. Usage

partitura, Release 1.0.0

(continued from previous page)

<partitura.score.Note object at 0x...>,
<partitura.score.Note object at 0x...>]
>>> part.notes[0] .duration # duration in divs
48

Alternatively, basic note attributes can be accessed through the note_array property:

>>> arr = part.note_array()
>>> arr.dtype
dtype ([('onset_beat', '<f4'"),

('duration_beat', '<f4'"),
('onset_qguarter', '<f4'),
("duration_qguarter', '<f4'),
('onset_div', '<i4d"),
('duration_div', '<id'),
('pitch', '<id'),
('voice', '<id"),
('id', '<U256")]

The onsets and durations of the notes are specified in various units of time.

>>> for pitch, onset, duration in arr[["pitch", "onset_beat", "duration_lbeat"]]:
C. print (pitch, onset, duration)

69 0.0 4.
72 2.0 2.
76 2.0 2.

o O O

2.7 lterating over arbitrary musical objects

In the previous Section we used part .notes to obtain the notes in the part as a list. This property is a shortcut for
the following statement:

>>> list (part.iter_all (partitura.score.Note))

[<partitura.score.Note object at 0x...>,
<partitura.score.Note object at 0x...>,
<partitura.score.Note object at 0x...>]

That is, we iterate over all objects of class partitura.score.Note, and store them in a list. The iter_all ()
method can be used to iterate over objects of arbitrary classes in the part:

>>> for m in part.iter_all (partitura.score.Measure):
print (m)
0--48 Measure number=1l

The iter_all () method has a keyword include_subclasses that indicates that we are also interested in any sub-
classes of the specified class. For example, the following statement iterates over all objects in the part:

>>> for m in part.iter_all (object, include_subclasses=True):
. print (m)

0--48 Note id=n0l voice=1 staff=2 type=whole pitch=A4

0--24 Rest 1id=r0l voice=2 staff=1 type=half

0--48 Page number=1

0--48 System number=1

0--48 Measure number=1l

(continues on next page)

2.7. lterating over arbitrary musical objects 7

partitura, Release 1.0.0

(continued from previous page)

0-—- TimeSignature 4/4
24--48 Note 1d=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note 1d=n03 voice=2 staff=1 type=half pitch=E>

This approach is useful for example when we want to retrieve rests in addition to notes. Since rests and notes are both
subclassess of GenericNote, the following works:

>>> for m in part.iter_all (partitura.score.GenericNote, include_subclasses=True) :
. print (m)

0--48 Note i1d=n0l voice=1l staff=2 type=whole pitch=A4

0--24 Rest id=r01 voice=2 staff=1 type=half

24--48 Note 1d=n02 voice=2 staff=1 type=half pitch=C5

24--48 Note 1d=n03 voice=2 staff=1 type=half pitch=E>5

By default, include_subclasses is False.

2.8 Creating a musical score by hand

You can build a musical score from scratch, by creating a partitura.score.Part object. We start by renaming
the partitura.score module to score, for convenience:

’>>> import partitura.score as score

Then we create an empty part with id ‘PO’ and name ‘My Part’ (the name is optional, the id is mandatory), and a
quarter note duration of 10 units.

’>>> part = score.Part('P0', 'My Part', quarter_duration=10)

Adding elements to the part is done by the add () method, which takes a musical element, a start and an end time.
Either of the start and end arguments can be omitted, but if both are omitted the method will do nothing.

We now add a 3/4 time signature at t=0, and three notes. The notes are instantiated by specifying an (optional) id,
pitch information, and an (optional) voice:

>>> part.add(score.TimeSignature (3, 4), start=0)

>>> part.add(score.Note(id="n0'"', step='A', octave=4, voice=1), start=0, end=10)
>>> part.add(score.Note(id="nl'"', step='C', octave=5, alter=1, voice=2), start=0,
—~end=10)

>>> part.add(score.Note(id="n2'"', step='C', octave=5, alter=1, voice=2), start=10,
—end=40)

Note that the duration of notes is not hard-coded in the Note instances, but defined implicitly by their start and end
times in the part.

Here’s what the part looks like:

>>> print (part.pretty())
Part id="PO" name="My Part"

TimePoint t=0 quarter=10
L— starting objects

L— 0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4

(continues on next page)

8 Chapter 2. Usage

partitura, Release 1.0.0

(continued from previous page)

0--10 Note id=nl voice=2 staff=None type=quarter pitch=C#5
0-— TimeSignature 3/4

— TimePoint t=10 quarter=10
ending objects

k: 0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=nl voice=2 staff=None type=quarter pitch=C#5

starting objects

L— 10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

‘— TimePoint t=40 quarter=10

L— ending objects

10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

We see that the notes n0, nl, and n2 have been correctly recognized as quarter, quarter, and dotted half, respectively.

Let’s save the part to MusicXML:

>>> partitura.save_musicxml (part, 'mypart.musicxml')

When we look at the contents of mypart.musicxml, surprisingly, the <part></part> element is empty:

<?xml version='1l.0"' encoding='UTF-8'?>
<!DOCTYPE score-partwise PUBLIC
"-//Recordare//DTD MusicXML 3.1 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">
<score—-partwise>
<part-list>
<score-part id="P0">
<part-name>My Part</part-—-name>
</score-part>
</part-list>
<part id="P0"/>
</score-partwise>

The problem with our newly created part is that it contains no measures. Since the MusicXML format requires musical
elements to be contained in measures, saving the part to MusicXML omits the objects we added.

2.9 Adding measures

One option to add measures is to add them by hand like we’ve added the notes and time signature. A more convenient
alternative is to use the function add_measures ():

’>>> score.add_measures (part)

This function uses the time signature information in the part to add measures accordingly:

2.9. Adding measures 9

partitura, Release 1.0.0

>>> print (part.pretty())
Part id="PO" name="My Part"

I— TimePoint t=0 quarter=10
L— starting objects
0--30 Measure number=1
0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=nl voice=2 staff=None type=quarter pitch=C#5
0-— TimeSignature 3/4
— TimePoint t=10 quarter=10

ending objects

0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=nl voice=2 staff=None type=quarter pitch=C#5

starting objects
L— 10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5
— TimePoint t=30 quarter=10
ending objects
L— 0--30 Measure number=1l
starting objects

L— 30--40 Measure number=2

\— TimePoint t=40 quarter=10
L— ending objects

30--40 Measure number=2
10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

Let’s see what our part with measures looks like in typeset form:

>>> partitura.render (part)

fH . I

My Part = —
e/ 1

Although the notes are there, the music is not typeset correctly, since the first measure should have a duration of three
quarter notes, but instead is has a duration of four quarter notes. The problem is that the note n2 crosses a measure
boundary, and thus should be tied.

2.10 Splitting up notes using ties

In musical notation notes that span measure boundaries are split up, and then tied together. This can be done automat-
ically using the function tie_notes ():

10 Chapter 2. Usage

partitura, Release 1.0.0

>>> score.tie_notes (part)
>>> partitura.render (part)

(4] I

L3

MyPEI.Tt- @ il —F
[,

Now the score looks correct. Displaying the contents reveals that the part now has an extra quarter note n2a that starts
at the measure boundary, whereas the note n2 is now a half note, ending at the measure boundary.

>>> print (part.pretty())
Part id="PO" name="My Part"

I— TimePoint t=0 quarter=10
L— starting objects
0--30 Measure number=1
0--10 Note 1id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=nl voice=2 staff=None type=quarter pitch=C#5
0-— TimeSignature 3/4
— TimePoint t=10 quarter=10

ending objects

0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=nl voice=2 staff=None type=quarter pitch=C#5

starting objects
L— 10--30 Note id=n2 voice=2 staff=None type=half tie_group=n2+n2a pitch=C#5
— TimePoint t=30 quarter=10
ending objects

0--30 Measure number=1
10--30 Note id=n2 voice=2 staff=None type=half tie_group=n2+n2a pitch=C#5

starting objects

k: 30--40 Measure number=2
30--40 Note id=n2a voice=2 staff=None type=quarter tie_group=n2+n2a_,

—pitch=C#5
L— TimePoint t=40 quarter=10
L— ending objects
30--40 Measure number=2

30--40 Note id=n2a voice=2 staff=None type=quarter tie_group=n2+n2a,,
—pitch=C#5

2.10. Splitting up notes using ties 11

partitura, Release 1.0.0

2.11 Removing elements

Just like we can add elements to a part, we can also remove them, using the remove () method. The following lines
remove the measure instances that were added using the add_measures () function:

>>> for measure in list (part.iter_all (score.Measure)) :
part.remove (measure)

Note that we create a list of all measures in part before we remove them. This is necessary to avoid changing the
contents of part while we iterate over it.

2.12 Importing MIDI files

For quick access to note information from a MIDI file, use the function midi_to_notearray (), as described
in Quick start: Reading note information from a MIDI file. In addition to this function, which returns a structured
numpy array, partitura provides two further functions to load information from MIDI files, depending on whether the
information should be treated as a performance or as a score (see introduction.html#score-vs-performance):

* load_performance_midi ()
e load_score_midi ()

The load_performance_midi () returns a PerformedPart instance. The PerformedPart instance stores
notes, program change and control change messages. The notes in notes are dictionaries with the usual MIDI
attributes “midi_pitch”, “note_on”, “note_off”, etc. Additionally, there is a key called “sound_off” which returns
note_off times adjusted by the sustain pedal. Set the on/off threshold value for the sustain_pedal MIDI cc message
like so:

>>> path_to_midifile = partitura.EXAMPLE_MIDI
>>> performedpart = partitura.load_performance_midi (path_to_midifile)
>>> performedpart.sustain_pedal_threshold=64

Setting the sustain pedal threshold to 128 will prevent the change of “sound_off” values by sustain pedal.
When the MIDI file does not contain any pedal information, the “sound_off” is equal to “note_off”’, and set-
ting sustain_pedal_threshold has no effect. Calling note_array () will return a structured array like
midi_to_notearray (). The values in note_array[“duration_sec”] are the actual duration of the note based on
the sound_off time.

The function 1oad_score_midi () returns a Part instance. The function estimates the score structure based on
the “parts per quarter” value and the note_on/note_off times in a MIDI file. This function only works with deadpan
“score” MIDI files that can be generated by Digital Audio Workstations, Scorewriters, and other sequencers. It is not
suitable to estimate the score from a performed MIDI file, such as a recording of a pianist playing on a MIDI keyboard.

>>> midipart = partitura.load_score_midi (path_to_midifile)
>>> midipart.note_array (# doctest: +NORMALIZE WHITESPACE
array ([(0., 4., 0., 0, 48, 69, 1, 'n0"),

(2., 2.,
(2., 2., 2., 24, 24, 76, 2, 'n2")1,
dtype=[('onset_beat', '<f4'),
'duration_beat', '<f4'),
'onset_quarter', '<f4'),

)
4.,

2., 2., 24, 24, 72, 2, 'nl'),
2.,

'onset_div', '<i4d'),

'duration_div',
'pitch', '<i4d'"),

(
(
(
("duration_qguarter', '<f4'),
(
(
(

'<i4'),

(continues on next page)

12

Chapter 2. Usage

introduction.html#score-vs-performance

partitura, Release 1.0.0

(continued from previous page)

("voice', '<id'y,
('id', '<U256")1)

The note_array of a part is a structured array similar to the one of the Per formedPart instance, but the first 6 fields
refer to onset and duration in score time. The score MIDI function correctly identifies the note lengths of a whole note
and two half notes. However, the position of the first measure bar (as well as other score properties) is only an estimate
as a “score” MIDI file of a score that begins with a tied quarter note in an anacrusis measure would look exactly the
same in the MIDI encoding.

2.13 Music Analysis

The package offers tools for various types music analysis, including key estimation, tonal tension estimation, voice
separation, and pitch spelling. The functions take the note information of in the form of an instance of Part,
PartGroup, or PerformedPart, a list of Part objects or a structured numpy array, as returned by the
note_array () attribute.

2.13.1 Key Estimation

Key estimation is performed by the function est imate_key (). The function returns a string representation of the
root and mode of the key:

>>> key_name = partitura.musicanalysis.estimate_key (part.note_array())
>>> print (key_name)
CH#m

The number of sharps/flats and the mode can be inferred from the key name using the convenience function
key_name_to_fifths_mode():

>>> partitura.utils.key_name_to_fifths_mode (key_name)
(4, 'minor')

2.13.2 Pitch Spelling

Pitch spelling estimation is performed by the function estimate_spelling (). The function returns a structured
array with pitch spelling information (i.e., with fields step, alter and octave) for each note in the input note_array. If
the input to this method is an instance of Part, PartGroup, or PerformedPart, a list of Part, each row of
the output corresponds to order of the notes in the note_array that would be generated by using the helper method
ensure_notearray ().

>>> pitch_spelling = partitura.musicanalysis.estimate_spelling(part.note_array())
>>> print (pitch_spelling)
(('a', 0, 4 ('c', 1, 5 ('c', 1, 5]

2.13.3 Voice Estimation

Voice estimation is performed by the function estimate_voices (). The function returns a numpy array with
voice information for each note in the input note_array. If the input to this method is an instance of Part,
PartGroup, or PerformedPart, a list of Part, each row of the output corresponds to order of the notes in
the note_array that would be generated by using the helper method ensure_notearray ().

2.13. Music Analysis 13

https://numpy.org/doc/stable/user/basics.rec.html

partitura, Release 1.0.0

>>> voices = partitura.musicanalysis.estimate_voices (part.note_array())
>>> print (voices)
[1 1 1]

2.13.4 Tonal Tension

Three tonal tension features proposed by Herremans and Chew (2016) are estimated by the function
estimate_tonaltension (). The function returns a strured array with fields cloud_diameter, cloud_momentum,
tensile_strain and onset. In contrast to the other methods in partitura.musicanalysis, the tonal tension features are not
computed for each note, but for specific time points, which are specified by argument ss, which can be a float specify-
ing the step size, a 1D numpy array with time values, or ‘onset’, which computes the tension features at each unique
onset time.

>>> import numpy as np

>>> tonal_tension = partitura.musicanalysis.estimate_tonaltension (part, ss='onset')
>>> print (np.unique (part.note_array['onset_beat']))

[0. 1.]

>>> print (tonal_tension.dtype.names)

('onset_beat', 'cloud_diameter', 'cloud_momentum', 'tensile_strain')

>>> print (tonal_tension['cloud_momentum'])

[0. 0.16666667]
>>> partitura.musicanalysis.estimate_spelling(part.note_array()) # doctest:
—+NORMALIZE WHITESPACE
array([('A"', O, 4), ('C', 1, 5), ('c', 1, 51,
dtype=[('step', '<U1l'), ('alter', '<i8'), ('octave', '<i8'")])

14 Chapter 2. Usage

CHAPTER 3

Index

15

partitura, Release 1.0.0

16 Chapter 3. Index

CHAPTER 4

partitura

17

partitura, Release 1.0.0

18 Chapter 4. partitura

CHAPTER B

partitura.score

19

partitura, Release 1.0.0

20 Chapter 5. partitura.score

CHAPTER O

partitura.performance

21

partitura, Release 1.0.0

22 Chapter 6. partitura.performance

CHAPTER /

partitura.musicanalysis

23

partitura, Release 1.0.0

24 Chapter 7. partitura.musicanalysis

CHAPTER 8

partitura.utils

25

	Introduction
	Supported file types
	Conceptual Overview
	Relation to music21

	Usage
	Quick start: Reading note information from a MIDI file
	Importing MusicXML
	Displaying the typeset part
	Exporting a score to MusicXML
	Viewing the contents of a score
	Extracting note information from a Part
	Iterating over arbitrary musical objects
	Creating a musical score by hand
	Adding measures
	Splitting up notes using ties
	Removing elements
	Importing MIDI files
	Music Analysis

	Index
	partitura
	partitura.score
	partitura.performance
	partitura.musicanalysis
	partitura.utils

