
partitura
Release 0.4.0

Sep 29, 2022

Contents

1 Introduction 1
1.1 Supported file types . 1
1.2 Conceptual Overview . 2
1.3 Relation to music21 . 2

2 Usage 3
2.1 Quick start: Reading note information from a MIDI file . 3
2.2 Importing MusicXML . 4
2.3 Displaying the typeset part . 5
2.4 Exporting a score to MusicXML . 5
2.5 Viewing the contents of a score . 6
2.6 Extracting note information from a Part . 6
2.7 Iterating over arbitrary musical objects . 7
2.8 Creating a musical score by hand . 8
2.9 Adding measures . 9
2.10 Splitting up notes using ties . 10
2.11 Removing elements . 12
2.12 Importing MIDI files . 12
2.13 Music Analysis . 13

3 Index 15

4 partitura 17

5 partitura.score 23

6 partitura.performance 41

7 partitura.musicanalysis 43

8 partitura.utils 47

Python Module Index 51

Index 53

i

ii

CHAPTER 1

Introduction

The principal aim of the partitura package is to handle richly structured musical information as conveyed by modern
staff music notation. It provides a much wider range of possibilities to deal with music than the more reductive (but
very common) pianoroll-oriented approach inspired by the MIDI standard.

Specifically, the package allows for representing a variety of information in musical scores beyond the onset, duration
and MIDI pitch numbers of notes, such as:

• pitch spellings,

• symbolic duration categories,

• and voicing information.

Moreover, it supports musical notions that are not note-related, like:

• measures,

• tempo indications,

• performance directions,

• repeat structures,

• and time/key signatures.

In addition to handling score information, the package can load MIDI recordings of performed scores, and alignments
between scores and performances.

1.1 Supported file types

Musical data can be loaded from and saved to MusicXML and MIDI files. Furthermore, partitura uses MuseScore as a
backend to load files in other formats, like MuseScore, MuseData, and GuitarPro. This requires a working installation
of MuseScore on your computer. MEI format is currently not supported, but support is planned for a future release.

Score-performance alignments can be read from different file types by partitura. Firstly it supports reading from the
Matchfile format used by the publicly available Vienna4x22 piano corpus research dataset. Secondly there is read
support for Match and Corresp files produced by Nakamura’s music alignment software.

1

https://musescore.org/
https://repo.mdw.ac.at/projects/IWK/the_vienna_4x22_piano_corpus/data/index.html
https://midialignment.github.io/demo.html

partitura, Release 0.4.0

1.2 Conceptual Overview

This section offers some conceptual and design considerations that may be helpful when working with the package.

1.2.1 Representing score information

The package defines a musical ontology to describe musical scores that roughly follows the elements defined by
the MusicXML specification. More specifically, the elements of a musical score are represented as a collection of
instances of classes like Note, Measure, Slur, and Rest. These instances are attached to an instance of class Part,
which corresponds to the role of an instrument in a musical score. A part may contain one or more staffs, depending
on the instrument.

In contrast to MusicXML documents, where musical time is largely implicit, time plays a crucial role in the represen-
tation of scores in partitura. Musical elements are associated to a Part instance by specifying their start (and possibly
end) times. The Part instance thus acts as a timeline consisting of a number of discrete timepoints, each of which holds
references to the musical elements starting and ending at that time. The musical elements themselves contain refer-
ences to their respective starting and ending timepoints. Other than that, cross-references between musical elements
are used sparingly, to keep the API simple.

Musical elements in a Part can be filtered by class and iterated over, either from a particular timepoint onward or
backward, or within a specified range. For example to find the measure to which a note belongs, you would iterate
backwards over elements of class Measure that start at or before the start time of the note and select the first element
of that iteration.

1.2.2 Score vs. performance

Although the MIDI format can be used to represent both score-related (key/time signatures, tempo) and performance-
related information (expressive timing, dynamics), partitura regards a MIDI file as a representation of either a a
score or a performance. Therefore is has separate functions to load and save scores (load_score_midi(),
save_score_midi()) and performances (load_performance_midi(), save_performance_midi()).
load_score_midi() offers simple quantization for unquantized MIDIs but in general you should not expect a
MIDI representation of a performance to be loaded correctly as a Part instance.

1.3 Relation to music21

The music21 package has been around since 2008, and is one of the few python packages available for working with
symbolic musical data. It is both more mature and more elaborate than partitura. The aims of partitura are different
from and more modest than those of music21, which aims to provide a toolkit for computer-aided musicology. Instead,
partitura intends to provide a convenient way to work with symbolic musical data in the context of problems such as
musical expression modeling, or music generation. Although it is not the main aim of the package to provide music
analysis tools, the package does offer functionality for pitch spelling, voice assignment and key estimation.

2 Chapter 1. Introduction

http://usermanuals.musicxml.com/MusicXML/MusicXML.htm

CHAPTER 2

Usage

In this Section we demonstrate basic usage of the package.

2.1 Quick start: Reading note information from a MIDI file

Before we present more in-depth usage of the package, we cover the common use case of reading note information
from a MIDI file. The function midi_to_notearray() does exactly that: It loads the note information from the
MIDI file MIDI into a structured numpy array with attributes onset (in seconds), duration (in seconds), pitch, velocity,
and ID (automatically generated). For the purpose of this example we use a small MIDI file that comes with the
partitura package. The path to the example MIDI file is stored as partitura.EXAMPLE_MIDI.

>>> import partitura
>>> path_to_midifile = partitura.EXAMPLE_MIDI
>>> note_array = partitura.midi_to_notearray(path_to_midifile)
>>> note_array # doctest: +NORMALIZE_WHITESPACE
array([(0., 2., 69, 64, 0, 1, 'n0'),

(1., 1., 72, 64, 0, 2, 'n1'),
(1., 1., 76, 64, 0, 2, 'n2')],

dtype=[('onset_sec', '<f4'),
('duration_sec', '<f4'),
('pitch', '<i4'),
('velocity', '<i4'),
('track', '<i4'),
('channel', '<i4'),
('id', '<U256')])

The individual fields can be accessed using the field names as strings, e.g.:

>>> note_array["onset_sec"] # doctest: +NORMALIZE_WHITESPACE
array([0., 1., 1.], dtype=float32)

To access further information from MIDI files, such as time/key signatures, and control changes, see Importing MIDI
files.

3

https://numpy.org/doc/stable/user/basics.rec.html

partitura, Release 0.4.0

2.2 Importing MusicXML

As an example we take a MusicXML file with the following contents:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE score-partwise PUBLIC

"-//Recordare//DTD MusicXML 3.1 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">

<score-partwise>
<part-list>
<score-part id="P1">
<part-name>Piano</part-name>

</score-part>
</part-list>
<part id="P1">
<!--===-->
<measure number="1">

<attributes>
<divisions>12</divisions>
<time>
<beats>4</beats>
<beat-type>4</beat-type>

</time>
</attributes>
<print new-page="yes" new-system="yes"/>
<note id="n01">

<pitch>
<step>A</step>
<octave>4</octave>

</pitch>
<duration>48</duration>
<voice>1</voice>
<type>whole</type>
<staff>2</staff>

</note>
<backup>

<duration>48</duration>
</backup>
<note id="r01">

<rest/>
<duration>24</duration>
<voice>2</voice>
<type>half</type>
<staff>1</staff>

</note>
<note id="n02">
<pitch>
<step>C</step>
<octave>5</octave>

</pitch>
<duration>24</duration>
<voice>2</voice>
<type>half</type>
<staff>1</staff>

</note>
<note id="n03">

<chord/>
(continues on next page)

4 Chapter 2. Usage

partitura, Release 0.4.0

(continued from previous page)

<pitch>
<step>E</step>
<octave>5</octave>

</pitch>
<duration>24</duration>
<voice>2</voice>
<type>half</type>
<staff>1</staff>

</note>
</measure>

</part>
</score-partwise>

To load the score in python we first import the partitura package:

>>> import partitura

For convenience a MusicXML file with the above contents is included in the package. The path to the file is stored as
partitura.EXAMPLE_MUSICXML, so that we load the above score as follows:

>>> path_to_musicxml = partitura.EXAMPLE_MUSICXML
>>> part = partitura.load_musicxml(path_to_musicxml)

2.3 Displaying the typeset part

The partitura.render() function displays the part as a typeset score:

>>> partitura.render(part)

This should open an image of the score in the default image viewing application of your desktop. The function requires
that either MuseScore or lilypond is installed on your computer.

2.4 Exporting a score to MusicXML

The partitura.save_musicxml() function exports score information to MusicXML. The following line saves
part to a file mypart.musicxml:

>>> partitura.save_musicxml(part, 'mypart.musicxml')

2.3. Displaying the typeset part 5

https://musescore.org/
http://lilypond.org/

partitura, Release 0.4.0

2.5 Viewing the contents of a score

The function load_musicxml() returns the score as a Part instance. When we print it, it displays its id and
part-name:

>>> print(part)
Part id="P1" name="Piano"

To see all of the elements in the part at once, we can call its pretty() method:

>>> print(part.pretty())
Part id="P1" name="Piano"

TimePoint t=0 quarter=12

starting objects

0--48 Measure number=1
0--48 Note id=n01 voice=1 staff=2 type=whole pitch=A4
0--48 Page number=1
0--24 Rest id=r01 voice=2 staff=1 type=half
0--48 System number=1
0-- TimeSignature 4/4

TimePoint t=24 quarter=12

ending objects

0--24 Rest id=r01 voice=2 staff=1 type=half

starting objects

24--48 Note id=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note id=n03 voice=2 staff=1 type=half pitch=E5

TimePoint t=48 quarter=12

ending objects

0--48 Measure number=1
0--48 Note id=n01 voice=1 staff=2 type=whole pitch=A4
24--48 Note id=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note id=n03 voice=2 staff=1 type=half pitch=E5
0--48 Page number=1
0--48 System number=1

This reveals that the part has three time points at which one or more musical objects start or end. At t=0 there are
several starting objects, including a TimeSignature, Measure, Page, and System.

2.6 Extracting note information from a Part

The notes in this part can be accessed through the notes property:

>>> part.notes
[<partitura.score.Note object at 0x...>,

(continues on next page)

6 Chapter 2. Usage

partitura, Release 0.4.0

(continued from previous page)

<partitura.score.Note object at 0x...>,
<partitura.score.Note object at 0x...>]

>>> part.notes[0].duration # duration in divs
48

Alternatively, basic note attributes can be accessed through the note_array property:

>>> arr = part.note_array
>>> arr.dtype
dtype([('onset_beat', '<f4'),

('duration_beat', '<f4'),
('onset_quarter', '<f4'),

('duration_quarter', '<f4'),
('onset_div', '<i4'),

('duration_div', '<i4'),
('pitch', '<i4'),

('voice', '<i4'),
('id', '<U256')])

The onsets and durations of the notes are specified in various units of time.

>>> for pitch, onset, duration in arr[["pitch", "onset_beat", "duration_beat"]]:
... print(pitch, onset, duration)
69 0.0 4.0
72 2.0 2.0
76 2.0 2.0

2.7 Iterating over arbitrary musical objects

In the previous Section we used part.notes to obtain the notes in the part as a list. This property is a shortcut for
the following statement:

>>> list(part.iter_all(partitura.score.Note))
[<partitura.score.Note object at 0x...>,
<partitura.score.Note object at 0x...>,
<partitura.score.Note object at 0x...>]

That is, we iterate over all objects of class partitura.score.Note, and store them in a list. The iter_all()
method can be used to iterate over objects of arbitrary classes in the part:

>>> for m in part.iter_all(partitura.score.Measure):
... print(m)
0--48 Measure number=1

The iter_all() method has a keyword include_subclasses that indicates that we are also interested in any sub-
classes of the specified class. For example, the following statement iterates over all objects in the part:

>>> for m in part.iter_all(object, include_subclasses=True):
... print(m)
0--48 Note id=n01 voice=1 staff=2 type=whole pitch=A4
0--24 Rest id=r01 voice=2 staff=1 type=half
0--48 Page number=1
0--48 System number=1
0--48 Measure number=1

(continues on next page)

2.7. Iterating over arbitrary musical objects 7

partitura, Release 0.4.0

(continued from previous page)

0-- TimeSignature 4/4
24--48 Note id=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note id=n03 voice=2 staff=1 type=half pitch=E5

This approach is useful for example when we want to retrieve rests in addition to notes. Since rests and notes are both
subclassess of GenericNote, the following works:

>>> for m in part.iter_all(partitura.score.GenericNote, include_subclasses=True):
... print(m)
0--48 Note id=n01 voice=1 staff=2 type=whole pitch=A4
0--24 Rest id=r01 voice=2 staff=1 type=half
24--48 Note id=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note id=n03 voice=2 staff=1 type=half pitch=E5

By default, include_subclasses is False.

2.8 Creating a musical score by hand

You can build a musical score from scratch, by creating a partitura.score.Part object. We start by renaming
the partitura.score module to score, for convenience:

>>> import partitura.score as score

Then we create an empty part with id ‘P0’ and name ‘My Part’ (the name is optional, the id is mandatory), and a
quarter note duration of 10 units.

>>> part = score.Part('P0', 'My Part', quarter_duration=10)

Adding elements to the part is done by the add() method, which takes a musical element, a start and an end time.
Either of the start and end arguments can be omitted, but if both are omitted the method will do nothing.

We now add a 3/4 time signature at t=0, and three notes. The notes are instantiated by specifying an (optional) id,
pitch information, and an (optional) voice:

>>> part.add(score.TimeSignature(3, 4), start=0)
>>> part.add(score.Note(id='n0', step='A', octave=4, voice=1), start=0, end=10)
>>> part.add(score.Note(id='n1', step='C', octave=5, alter=1, voice=2), start=0,
→˓end=10)
>>> part.add(score.Note(id='n2', step='C', octave=5, alter=1, voice=2), start=10,
→˓end=40)

Note that the duration of notes is not hard-coded in the Note instances, but defined implicitly by their start and end
times in the part.

Here’s what the part looks like:

>>> print(part.pretty())
Part id="P0" name="My Part"

TimePoint t=0 quarter=10

starting objects

0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4

(continues on next page)

8 Chapter 2. Usage

partitura, Release 0.4.0

(continued from previous page)

0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
0-- TimeSignature 3/4

TimePoint t=10 quarter=10

ending objects

0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5

starting objects

10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

TimePoint t=40 quarter=10

ending objects

10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

We see that the notes n0, n1, and n2 have been correctly recognized as quarter, quarter, and dotted half, respectively.

Let’s save the part to MusicXML:

>>> partitura.save_musicxml(part, 'mypart.musicxml')

When we look at the contents of mypart.musicxml, surprisingly, the <part></part> element is empty:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE score-partwise PUBLIC

"-//Recordare//DTD MusicXML 3.1 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">

<score-partwise>
<part-list>
<score-part id="P0">
<part-name>My Part</part-name>

</score-part>
</part-list>
<part id="P0"/>

</score-partwise>

The problem with our newly created part is that it contains no measures. Since the MusicXML format requires musical
elements to be contained in measures, saving the part to MusicXML omits the objects we added.

2.9 Adding measures

One option to add measures is to add them by hand like we’ve added the notes and time signature. A more convenient
alternative is to use the function add_measures():

>>> score.add_measures(part)

This function uses the time signature information in the part to add measures accordingly:

2.9. Adding measures 9

partitura, Release 0.4.0

>>> print(part.pretty())
Part id="P0" name="My Part"

TimePoint t=0 quarter=10

starting objects

0--30 Measure number=1
0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
0-- TimeSignature 3/4

TimePoint t=10 quarter=10

ending objects

0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5

starting objects

10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

TimePoint t=30 quarter=10

ending objects

0--30 Measure number=1

starting objects

30--40 Measure number=2

TimePoint t=40 quarter=10

ending objects

30--40 Measure number=2
10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

Let’s see what our part with measures looks like in typeset form:

>>> partitura.render(part)

Although the notes are there, the music is not typeset correctly, since the first measure should have a duration of three
quarter notes, but instead is has a duration of four quarter notes. The problem is that the note n2 crosses a measure
boundary, and thus should be tied.

2.10 Splitting up notes using ties

In musical notation notes that span measure boundaries are split up, and then tied together. This can be done automat-
ically using the function tie_notes():

10 Chapter 2. Usage

partitura, Release 0.4.0

>>> score.tie_notes(part)
>>> partitura.render(part)

Now the score looks correct. Displaying the contents reveals that the part now has an extra quarter note n2a that starts
at the measure boundary, whereas the note n2 is now a half note, ending at the measure boundary.

>>> print(part.pretty())
Part id="P0" name="My Part"

TimePoint t=0 quarter=10

starting objects

0--30 Measure number=1
0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
0-- TimeSignature 3/4

TimePoint t=10 quarter=10

ending objects

0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5

starting objects

10--30 Note id=n2 voice=2 staff=None type=half tie_group=n2+n2a pitch=C#5

TimePoint t=30 quarter=10

ending objects

0--30 Measure number=1
10--30 Note id=n2 voice=2 staff=None type=half tie_group=n2+n2a pitch=C#5

starting objects

30--40 Measure number=2
30--40 Note id=n2a voice=2 staff=None type=quarter tie_group=n2+n2a

→˓pitch=C#5

TimePoint t=40 quarter=10

ending objects

30--40 Measure number=2
30--40 Note id=n2a voice=2 staff=None type=quarter tie_group=n2+n2a

→˓pitch=C#5

2.10. Splitting up notes using ties 11

partitura, Release 0.4.0

2.11 Removing elements

Just like we can add elements to a part, we can also remove them, using the remove() method. The following lines
remove the measure instances that were added using the add_measures() function:

>>> for measure in list(part.iter_all(score.Measure)):
... part.remove(measure)

Note that we create a list of all measures in part before we remove them. This is necessary to avoid changing the
contents of part while we iterate over it.

2.12 Importing MIDI files

For quick access to note information from a MIDI file, use the function midi_to_notearray(), as described
in Quick start: Reading note information from a MIDI file. In addition to this function, which returns a structured
numpy array, partitura provides two further functions to load information from MIDI files, depending on whether the
information should be treated as a performance or as a score (see introduction.html#score-vs-performance):

• load_performance_midi()

• load_score_midi()

The load_performance_midi() returns a PerformedPart instance. The PerformedPart instance stores
notes, program change and control change messages. The notes in notes are dictionaries with the usual MIDI
attributes “midi_pitch”, “note_on”, “note_off”, etc. Additionally, there is a key called “sound_off” which returns
note_off times adjusted by the sustain pedal. Set the on/off threshold value for the sustain_pedal MIDI cc message
like so:

>>> path_to_midifile = partitura.EXAMPLE_MIDI
>>> performedpart = partitura.load_performance_midi(path_to_midifile)
>>> performedpart.sustain_pedal_threshold=64

Setting the sustain pedal threshold to 128 will prevent the change of “sound_off” values by sustain pedal.
When the MIDI file does not contain any pedal information, the “sound_off” is equal to “note_off”, and set-
ting sustain_pedal_threshold has no effect. Calling note_array will return a structured array like
midi_to_notearray(). The values in note_array[“duration_sec”] are the actual duration of the note based
on the sound_off time.

The function load_score_midi() returns a Part instance. The function estimates the score structure based on
the “parts per quarter” value and the note_on/note_off times in a MIDI file. This function only works with deadpan
“score” MIDI files that can be generated by Digital Audio Workstations, Scorewriters, and other sequencers. It is not
suitable to estimate the score from a performed MIDI file, such as a recording of a pianist playing on a MIDI keyboard.

>>> midipart = partitura.load_score_midi(path_to_midifile)
>>> midipart.note_array # doctest: +NORMALIZE_WHITESPACE

array([(0., 4., 0., 4., 0, 48, 69, 1, 'n0'),
(2., 2., 2., 2., 24, 24, 72, 2, 'n1'),
(2., 2., 2., 2., 24, 24, 76, 2, 'n2')],

dtype=[('onset_beat', '<f4'),
('duration_beat', '<f4'),
('onset_quarter', '<f4'),
('duration_quarter', '<f4'),
('onset_div', '<i4'),
('duration_div', '<i4'),
('pitch', '<i4'),

(continues on next page)

12 Chapter 2. Usage

introduction.html#score-vs-performance

partitura, Release 0.4.0

(continued from previous page)

('voice', '<i4'),
('id', '<U256')])

The note_array of a part is a structured array similar to the one of the PerformedPart instance, but the first 6 fields
refer to onset and duration in score time. The score MIDI function correctly identifies the note lengths of a whole note
and two half notes. However, the position of the first measure bar (as well as other score properties) is only an estimate
as a “score” MIDI file of a score that begins with a tied quarter note in an anacrusis measure would look exactly the
same in the MIDI encoding.

2.13 Music Analysis

The package offers tools for various types music analysis, including key estimation, tonal tension estimation, voice
separation, and pitch spelling. The functions take the note information of in the form of an instance of Part,
PartGroup, or PerformedPart, a list of Part objects or a structured numpy array, as returned by the
note_array attribute.

2.13.1 Key Estimation

Key estimation is performed by the function estimate_key(). The function returns a string representation of the
root and mode of the key:

>>> key_name = partitura.musicanalysis.estimate_key(part.note_array)
>>> print(key_name)
C#m

The number of sharps/flats and the mode can be inferred from the key name using the convenience function
key_name_to_fifths_mode():

>>> partitura.utils.key_name_to_fifths_mode(key_name)
(4, 'minor')

2.13.2 Pitch Spelling

Pitch spelling estimation is performed by the function estimate_spelling(). The function returns a structured
array with pitch spelling information (i.e., with fields step, alter and octave) for each note in the input note_array. If
the input to this method is an instance of Part, PartGroup, or PerformedPart, a list of Part, each row of
the output corresponds to order of the notes in the note_array that would be generated by using the helper method
ensure_notearray().

>>> pitch_spelling = partitura.musicanalysis.estimate_spelling(part.note_array)
>>> print(pitch_spelling)
[('A', 0, 4) ('C', 1, 5) ('C', 1, 5)]

2.13.3 Voice Estimation

Voice estimation is performed by the function estimate_voices(). The function returns a numpy array with
voice information for each note in the input note_array. If the input to this method is an instance of Part,
PartGroup, or PerformedPart, a list of Part, each row of the output corresponds to order of the notes in
the note_array that would be generated by using the helper method ensure_notearray().

2.13. Music Analysis 13

https://numpy.org/doc/stable/user/basics.rec.html

partitura, Release 0.4.0

>>> voices = partitura.musicanalysis.estimate_voices(part.note_array)
>>> print(voices)
[1 1 1]

2.13.4 Tonal Tension

Three tonal tension features proposed by Herremans and Chew (2016) are estimated by the function
estimate_tonaltension(). The function returns a strured array with fields cloud_diameter, cloud_momentum,
tensile_strain and onset. In contrast to the other methods in partitura.musicanalysis, the tonal tension features are not
computed for each note, but for specific time points, which are specified by argument ss, which can be a float specify-
ing the step size, a 1D numpy array with time values, or ‘onset’, which computes the tension features at each unique
onset time.

>>> import numpy as np
>>> tonal_tension = partitura.musicanalysis.estimate_tonaltension(part, ss='onset')
>>> print(np.unique(part.note_array['onset_beat']))
[0. 1.]
>>> print(tonal_tension.dtype.names)
('onset_beat', 'cloud_diameter', 'cloud_momentum', 'tensile_strain')
>>> print(tonal_tension['cloud_momentum'])
[0. 0.16666667]

>>> partitura.musicanalysis.estimate_spelling(part.note_array) # doctest: +NORMALIZE_
→˓WHITESPACE
array([('A', 0, 4), ('C', 1, 5), ('C', 1, 5)],

dtype=[('step', '<U1'), ('alter', '<i8'), ('octave', '<i8')])

14 Chapter 2. Usage

CHAPTER 3

Index

15

partitura, Release 0.4.0

16 Chapter 3. Index

CHAPTER 4

partitura

The top level of the package contains functions to load and save data, display rendered scores, and functions to estimate
pitch spelling, voice assignment, and key signature.

partitura.EXAMPLE_MUSICXML = '/home/docs/.cache/Python-Eggs/partitura-0.4.0-py3.7.egg-tmp/partitura/assets/score_example.musicxml'
An example MusicXML file for didactic purposes

partitura.EXAMPLE_MIDI = '/home/docs/.cache/Python-Eggs/partitura-0.4.0-py3.7.egg-tmp/partitura/assets/score_example.mid'
An example MIDI file for didactic purposes

partitura.load_musicxml(xml, ensure_list=False, validate=False, force_note_ids=None)
Parse a MusicXML file and build a composite score ontology structure from it (see also scoreontology.py).

Parameters

• xml (str or file-like object) – Path to the MusicXML file to be parsed, or a
file-like object

• ensure_list (bool, optional) – When True return a list independent of how many
part or partgroup elements were created from the MIDI file. By default, when the return
value of load_musicxml produces a

• single (class:partitura.score.Part or) – partitura.score.PartGroup element,
the element itself is returned instead of a list containing the element. Defaults to False.

• validate (bool, optional) – When True the validity of the MusicXML is checked
against the MusicXML 3.1 specification before loading the file. An exception will be raised
when the MusicXML is invalid. Defaults to False.

• force_note_ids ((bool, 'keep') optional.) – When True each Note in the
returned Part(s) will have a newly assigned unique id attribute. Existing note id attributes in
the MusicXML will be discarded. If ‘keep’, only notes without a note id will be assigned
one.

Returns partlist – A list of either Part or PartGroup objects

Return type list

17

partitura, Release 0.4.0

partitura.save_musicxml(parts, out=None)
Save a one or more Part or PartGroup instances in MusicXML format.

Parameters

• parts (list, Part, or PartGroup) – A partitura.score.Part object,
partitura.score.PartGroup or a list of these

• out (str, file-like object, or None, optional) – Output file

Returns If no output file is specified using out the function returns the MusicXML data as a string.
Otherwise the function returns None.

Return type None or str

partitura.musicxml_to_notearray(fn, flatten_parts=True, include_pitch_spelling=False, in-
clude_key_signature=False, include_time_signature=False)

Return pitch, onset, and duration information for notes from a MusicXML file as a structured array.

By default a single array is returned by combining the note information of all parts in the MusicXML file.

Parameters

• fn (str) – Path to a MusicXML file

• flatten_parts (bool) – If True, returns a single array containing all notes. Otherwise,
returns a list of arrays for each part.

• include_pitch_spelling (bool (optional)) – If True, includes pitch spelling
information for each note. Default is False

• include_key_signature (bool (optional)) – If True, includes key signature
information, i.e., the key signature at the onset time of each note (all notes starting at the
same time have the same key signature). Default is False

• include_time_signature (bool (optional)) – If True, includes time signature
information, i.e., the time signature at the onset time of each note (all notes starting at the
same time have the same time signature). Default is False

Returns score – Structured array or list of structured arrays containing score information.

Return type structured array or list of structured arrays

partitura.load_score_midi(fn, part_voice_assign_mode=0, ensure_list=False, quantiza-
tion_unit=None, estimate_voice_info=True, estimate_key=False,
assign_note_ids=True)

Load a musical score from a MIDI file and return it as a Part instance.

This function interprets MIDI information as describing a score. Pitch names are estimated using Meredith’s
PS13 algorithm1. Assignment of notes to voices can either be done using Chew and Wu’s voice separation
algorithm2, or by choosing one of the part/voice assignment modes that assign voices based on track/channel
information. Furthermore, the key signature can be estimated based on Krumhansl’s 1990 key profiles3.

This function expects times to be metrical/quantized. Optionally a quantization unit may be specified. If you
wish to access the non- quantized time of MIDI events you may wish to used the load_performance_midi
function instead.

Parameters

• fn (str) – Path to MIDI file
1 Meredith, D. (2006). “The ps13 Pitch Spelling Algorithm”. Journal of New Music Research, 35(2):121.
2 Chew, E. and Wu, Xiaodan (2004) “Separating Voices in Polyphonic Music: A Contig Mapping Approach”. In Uffe Kock, editor, Computer

Music Modeling and Retrieval (CMMR), pp. 1–20, Springer Berlin Heidelberg.
3 Krumhansl, Carol L. (1990) “Cognitive foundations of musical pitch”, Oxford University Press, New York.

18 Chapter 4. partitura

partitura, Release 0.4.0

• part_voice_assign_mode ({0, 1, 2, 3, 4, 5}, optional) – This key-
word controls how part and voice information is associated to track and channel information
in the MIDI file. The semantics of the modes is as follows:

0 Return one Part per track, with voices assigned by channel

1 Return one PartGroup per track, with Parts assigned by channel (no voices)

2 Return single Part with voices assigned by track (tracks are combined, channel info is
ignored)

3 Return one Part per track, without voices (channel info is ignored)

4 Return single Part without voices (channel and track info is ignored)

5 Return one Part per <track, channel> combination, without voices Defaults to 0.

• ensure_list (bool, optional) – When True, return a list independent of how many
part or partgroup elements were created from the MIDI file. By default, when the return
value of load_score_midi produces a single partitura.score.Part or partitura.
score.PartGroup element, the element itself is returned instead of a list containing the
element. Defaults to False.

• quantization_unit (integer or None, optional) – Quantize MIDI times to
multiples of this unit. If None, the quantization unit is chosen automatically as the small-
est division of the parts per quarter (MIDI “ticks”) that can be represented as a symbolic
duration. Defaults to None.

• estimate_key (bool, optional) – When True use Krumhansl’s 1990 key profiles3

to determine the most likely global key, discarding any key information in the MIDI file.

• estimate_voice_info (bool, optional) – When True use Chew and Wu’s
voice separation algorithm2 to estimate voice information. This option is ignored for
part/voice assignment modes that infer voice information from the track/channel info (i.e.
part_voice_assign_mode equals 1, 3, 4, or 5). Defaults to True.

Returns One or more part or partgroup objects

Return type partitura.score.Part, partitura.score.PartGroup, or a list of these

References

partitura.save_score_midi(parts, out, part_voice_assign_mode=0, velocity=64, anacru-
sis_behavior=’shift’)

Write data from Part objects to a MIDI file

Parameters

• parts (Part, PartGroup or list of these) – The musical score to be saved.

• out (str or file-like object) – Either a filename or a file-like object to write
the MIDI data to.

• part_voice_assign_mode ({0, 1, 2, 3, 4, 5}, optional) – This key-
word controls how part and voice information is associated to track and channel information
in the MIDI file. The semantics of the modes is as follows:

0 Write one track for each Part, with channels assigned by voices

1 Write one track for each PartGroup, with channels assigned by Parts (voice info is lost)
(There can be multiple levels of partgroups, I suggest using the highest level of part-

19

partitura, Release 0.4.0

group/part) [note: this will e.g. lead to all strings into the same track] Each part not in a
PartGroup will be assigned its own track

2 Write a single track with channels assigned by Part (voice info is lost)

3 Write one track per Part, and a single channel for all voices (voice info is lost)

4 Write a single track with a single channel (Part and voice info is lost)

5 Return one track per <Part, voice> combination, each track having a single channel.

The default mode is 0.

• velocity (int, optional) – Default velocity for all MIDI notes. Defaults to 64.

• anacrusis_behavior ({"shift", "pad_bar"}, optional) – Strategy to
deal with anacrusis. If “shift”, all time points are shifted by the anacrusis (i.e., the first
note starts at 0). If “pad_bar”, the “incomplete” bar of the anacrusis is padded with silence.
Defaults to ‘shift’.

partitura.load_via_musescore(fn, ensure_list=False, validate=False, force_note_ids=True)
Load a score through through the MuseScore program.

This function attempts to load the file in MuseScore, export it as MusicXML, and then load the MusicXML.
This should enable loading of all file formats that for which MuseScore has import-support (e.g. MIDI, and
ABC, but currently not MEI).

Parameters

• fn (str) – Filename of the score to load

• ensure_list (bool, optional) – When True return a list independent of how many
part or partgroup elements were created from the MIDI file. By default, when the return
value of load_musicxml produces a

• single (class:partitura.score.Part or) – partitura.score.PartGroup element,
the element itself is returned instead of a list containing the element. Defaults to False.

• validate (bool, optional) – When True the validity of the MusicXML generated
by MuseScore is checked against the MusicXML 3.1 specification before loading the file.
An exception will be raised when the MusicXML is invalid. Defaults to False.

• force_note_ids (bool, optional.) – When True each Note in the returned Part(s)
will have a newly assigned unique id attribute. Existing note id attributes in the MusicXML
will be discarded.

Returns One or more part or partgroup objects

Return type partitura.score.Part, partitura.score.PartGroup, or a list of these

partitura.load_performance_midi(fn, default_bpm=120, merge_tracks=False)
Load a musical performance from a MIDI file.

This function should be used for MIDI files that encode performances, such as those obtained from a capture of
a MIDI instrument. This function loads note on/off events as well as control events, but ignores other data such
as time and key signatures. Furthermore, the PerformedPart instance that the function returns does not retain
the ticks_per_beat or tempo events. The timing of all events is represented in seconds. If you wish to retain this
information consider using the load_score_midi function.

Parameters

• fn (str) – Path to MIDI file

• default_bpm (number, optional) – Tempo to use wherever the MIDI does not
specify a tempo. Defaults to 120.

20 Chapter 4. partitura

partitura, Release 0.4.0

Returns A PerformedPart instance.

Return type partitura.performance.PerformedPart

partitura.save_performance_midi(performed_part, out, mpq=500000, ppq=480, de-
fault_velocity=64)

Save a PerformedPart instance as a MIDI file.

Parameters

• performed_part (PerformedPart) – The performed part to save

• out (str or file-like object) – Either a filename or a file-like object to write
the MIDI data to.

• mpq (int, optional) – Microseconds per quarter note. This is known in MIDI parlance
as the “tempo” value. Defaults to 500000 (i.e. 120 BPM).

• ppq (int, optional) – Parts per quarter, also known as ticks per beat. Defaults to 480.

• default_velocity (int, optional) – A default velocity value (between 0 and
127) to be used for notes without a specified velocity. Defaults to 64.

partitura.load_match(fn, create_part=False, pedal_threshold=64, first_note_at_zero=False, off-
set_duration_whole=True)

Load a matchfile.

Parameters

• fn (str) – The matchfile

• create_part (bool, optional) – When True create a Part object from the snote
information in the match file. Defaults to False.

• pedal_threshold (int, optional) – Threshold for adjusting sound off of the per-
formed notes using pedal information. Defaults to 64.

• first_note_at_zero (bool, optional) – When True the note_on and note_off
times in the performance are shifted to make the first note_on time equal zero.

Returns

• ppart (list) – The performed part, a list of dictionaries

• alignment (list) – The score–performance alignment, a list of dictionaries

• spart (Part) – The score part. This item is only returned when create_part = True.

partitura.save_match(alignment, ppart, spart, out, mpq=500000, ppq=480, performer=None, com-
poser=None, piece=None)

Save an Alignment of a PerformedPart to a Part in a match file.

Parameters

• alignment (list) – A list of dictionaries containing alignment information. See parti-
tura.io.importmatch.alignment_from_matchfile.

• ppart (partitura.performance.PerformedPart) – An instance of Performed-
Part containing performance information.

• spart (partitura.score.Part) – An instance of Part containing score information.

• out (str) – Out to export the matchfile.

• mpq (int) – Milliseconds per quarter note.

• ppq (int) – Parts per quarter note.

21

partitura, Release 0.4.0

• performer (str or None) – Name(s) of the performer(s) of the PerformedPart.

• composer (str or None) – Name(s) of the composer(s) of the piece represented by
Part.

• piece (str or None:) – Name of the piece represented by Part.

partitura.load_nakamuramatch(fn)
Load a match file as returned by Nakamura et al.’s MIDI to musicxml alignment

Fields of the file format as specified in8: ID (onset time) (offset time) (spelled pitch) (onset velocity)(offset
velocity) channel (match status) (score time) (note ID)(error index) (skip index)

Parameters fn (str) – The nakamura match.txt-file

Returns

• align (structured array) – structured array of performed notes

• ref (structured array) – structured array of score notes

• alignment (list) – The score–performance alignment, a list of dictionaries

References

partitura.load_nakamuracorresp(fn)
Load a corresp file as returned by Nakamura et al.’s MIDI to MIDI alignment.

Fields of the file format as specified in8: (ID) (onset time) (spelled pitch) (integer pitch) (onset velocity)

Parameters fn (str) – The nakamura match.txt-file

Returns

• align (structured array) – structured array of performed notes

• ref (structured array) – structured array of score notes

• alignment (list) – The score–performance alignment, a list of dictionaries

partitura.render(part, fmt=’png’, dpi=90, out_fn=None)
Create a rendering of one or more parts or partgroups.

The function can save the rendered image to a file (when out_fn is specified), or shown in the default image
viewer application.

Rendering is first attempted through musecore, and if that fails through lilypond. If that also fails the function
returns without raising an exception.

Parameters

• part (partitura.score.Part or partitura.score.PartGroup) – or a list of
these The score content to be displayed

• fmt ({'png', 'pdf'}, optional) – The image format of the rendered material

• out_fn (str or None, optional) – The path of the image output file. If None, the
rendering will be displayed in a viewer.

8 https://midialignment.github.io/MANUAL.pdf

22 Chapter 4. partitura

https://midialignment.github.io/MANUAL.pdf

CHAPTER 5

partitura.score

This module defines an ontology of musical elements to represent musical scores, such as measures, notes, slurs,
words, tempo and loudness directions. A score is defined at the highest level by a Part object (or a hierarchy of Part
objects, in a PartGroup object). This object serves as a timeline at which musical elements are registered in terms of
their start and end times.

class partitura.score.Part(id, part_name=None, part_abbreviation=None, quarter_duration=1)
Bases: object

Represents a score part, e.g. all notes of one single instrument (or multiple instruments written in the same
staff). Note that there may be more than one staff per score part.

Parameters

• id (str) – The identifier of the part. In order to be compatible with MusicXML the iden-
tifier should not start with a number.

• part_name (str or None, optional) – Name for the part. Defaults to None

• part_abbreviation (str or None, optional) – Abbreviated name for part

• quarter_duration (int, optional) – The default quarter duration. See
set_quarter_duration() for details.

id
See parameters

Type str

part_name
See parameters

Type str

part_abbreviation
See parameters

Type str

23

partitura, Release 0.4.0

pretty()
Return a pretty representation of this object.

Returns A pretty representation

Return type str

time_signature_map
A function mapping timeline times to the beats and beat_type of the time signature at that time. The
function can take scalar values or lists/arrays of values.

Returns The mapping function

Return type function

key_signature_map
A function mappting timeline times to the key and mode of the key signature at that time. The function
can take scalar values or lists/arrays of values

Returns The mapping function

Return type function

beat_map
A function mapping timeline times to beat times. The function can take scalar values or lists/arrays of
values.

Returns The mapping function

Return type function

inv_beat_map
A function mapping beat times to timeline times. The function can take scalar values or lists/arrays of
values.

Returns The mapping function

Return type function

quarter_map
A function mapping timeline times to quarter times. The function can take scalar values or lists/arrays of
values.

Returns The mapping function

Return type function

inv_quarter_map
A function mapping quarter times to timeline times. The function can take scalar values or lists/arrays of
values.

Returns The mapping function

Return type function

notes
Return a list of all Note objects in the part. This list includes GraceNote objects but not Rest objects.

Returns list of Note objects

Return type list

notes_tied
Return a list of all Note objects in the part that are either not tied, or the first note of a group of tied notes.
This list includes GraceNote objects but not Rest objects.

24 Chapter 5. partitura.score

partitura, Release 0.4.0

Returns List of Note objects

Return type list

quarter_durations(start=None, end=None)
Return an Nx2 array with quarter duration (second column) and their respective times (first column).

When a start and or end time is specified, the returned array will contain only the entries within those
bounds.

Parameters

• start (number, optional) – Start of range

• end (number, optional) – End of range

Returns An array with quarter durations and times

Return type ndarray

quarter_duration_map
A function mapping timeline times to quarter durations in effect at those times. The function can take
scalar values or lists/arrays of values.

Returns The mapping function

Return type function

set_quarter_duration(t, quarter)
Set the duration of a quarter note from timepoint t onwards.

Setting the quarter note duration defines how intervals between timepoints are related to musical durations.
For example when two timepoints t1 and t2 have associated times 10 and 20 respecively, then the interval
between t1 and t2 corresponds to a half note when the quarter duration equals 5 during that interval.

The quarter duration can vary throughout the part. When setting a quarter duration at time t, then that
value takes effect until the time of the next quarter duration. If a different quarter duration was already set
at time t, it wil be replaced.

Note setting the quarter duration does not change the timepoints, only the relation to musical time. For
illustration: in the example above, when changing the current quarter duration from 5 to 10, a note that
starts at t1 and ends at t2 will change from being a half note to being a quarter note.

Parameters

• t (int) – Time at which to set the quarter duration

• quarter (int) – The quarter duration

get_point(t)
Return the TimePoint object with time t, or None if there is no such object.

get_or_add_point(t)
Return the TimePoint object with time t; if there is no such object, create it, add it to the time line, and
return it.

Parameters t (int) – Time value t

Returns a TimePoint object with time t

Return type TimePoint

add(o, start=None, end=None)
Add an object to the timeline.

25

partitura, Release 0.4.0

An object can be added by start time, end time, or both, depending on which of the start and end keywords
are provided. If neither is provided this method does nothing.

start and end should be non-negative integers.

Parameters

• o (TimedObject) – Object to be removed

• start (int, optional) – The start time of the object

• end (int, optional) – The end time of the object

remove(o, which=’both’)
Remove an object from the timeline.

An object can be removed by start time, end time, or both.

Parameters

• o (TimedObject) – Object to be removed

• which ({'start', 'end', 'both'}, optional) – Whether to remove o as a
starting object, an ending object, or both. Defaults to ‘both’.

iter_all(cls=None, start=None, end=None, include_subclasses=False, mode=’starting’)
Iterate (in direction of increasing time) over all instances of cls that either start or end (depending on mode)
in the interval start to end. When start and end are omitted, the whole timeline is searched.

Parameters

• cls (class, optional) – The class of objects to iterate over. If omitted, iterate over
all objects in the part.

• start (TimePoint, optional) – The start of the interval to search. If omitted or None,
the search starts at the start of the timeline. Defaults to None.

• end (TimePoint, optional) – The end of the interval to search. If omitted or None, the
search ends at the end of the timeline. Defaults to None.

• include_subclasses (bool, optional) – If True also return instances that are
subclasses of cls. Defaults to False.

• mode ({'starting', 'ending'}, optional) – Flag indicating whether to
search for starting or ending objects. Defaults to ‘starting’.

Yields object – Instances of the specified type.

last_point
The last TimePoint on the timeline, or None if the timeline is empty.

Returns

Return type TimePoint

first_point
The first TimePoint on the timeline, or None if the timeline is empty.

Returns

Return type TimePoint

class partitura.score.TimePoint(t, quarter=None)
Bases: partitura.utils.generic.ComparableMixin

A TimePoint represents a temporal position within a Part.

26 Chapter 5. partitura.score

partitura, Release 0.4.0

TimePoints are used to keep track of the starting and ending of musical elements in the part. They are created
automatically when adding musical elements to a part using its add() method, so there should be normally no
reason to instantiate TimePoints manually.

Parameters

• t (int) – The time associated to this TimePoint. Should be a non- negative integer.

• quarter (int) – The duration of a quarter note at this TimePoint

t
See parameters

Type int

quarter
See parameters

Type int

starting_objects
A dictionary where the musical objects starting at this time are grouped by class.

Type dictionary

ending_objects
A dictionary where the musical objects ending at this time are grouped by class.

Type dictionary

prev
The preceding TimePoint (or None if there is none)

Type TimePoint

next
The succeding TimePoint (or None if there is none)

Type TimePoint

add_starting_object(obj)
Add object obj to the list of starting objects.

remove_starting_object(obj)
Remove object obj from the list of starting objects.

remove_ending_object(obj)
Remove object obj from the list of ending objects.

add_ending_object(obj)
Add object obj to the list of ending objects.

iter_starting(cls, include_subclasses=False)
Iterate over all objects of type cls that start at this time point.

Parameters

• cls (class) – The type of objects to iterate over

• include_subclasses (bool, optional) – When True, include all objects of all
subclasses of cls in the iteration. Defaults to False.

Yields cls – Instance of type cls

iter_ending(cls, include_subclasses=False)
Iterate over all objects of type cls that end at this time point.

27

partitura, Release 0.4.0

Parameters

• cls (class) – The type of objects to iterate over

• include_subclasses (bool, optional) – When True, include all objects of all
subclasses of cls in the iteration. Defaults to False.

Yields cls – Instance of type cls

iter_prev(cls, eq=False, include_subclasses=False)
Iterate backwards in time from the current timepoint over starting object(s) of type cls.

Parameters

• cls (class) – Class of objects to iterate over

• eq (bool, optional) – If True start iterating at the current timepoint, rather than its
predecessor. Defaults to False.

• include_subclasses (bool, optional) – If True include subclasses of cls in
the iteration. Defaults to False.

Yields cls – Instances of cls

iter_next(cls, eq=False, include_subclasses=False)
Iterate forwards in time from the current timepoint over starting object(s) of type cls.

Parameters

• cls (class) – Class of objects to iterate over

• eq (bool, optional) – If True start iterating at the current timepoint, rather than its
successor. Defaults to False.

• include_subclasses (bool, optional) – If True include subclasses of cls in
the iteration. Defaults to False.

Yields cls – Instances of cls

class partitura.score.TimedObject
Bases: partitura.utils.generic.ReplaceRefMixin

This is the base class of all classes that have a start and end point. The start and end attributes initialized to None,
and are set/unset when the object is added to/removed from a Part, using its add() and remove() methods,
respectively.

start
Start time of the object

Type TimePoint

end
End time of the object

Type TimePoint

duration
The duration of the timed object in divisions. When either the start or the end property of the object are
None, the duration is None.

Returns

Return type int or None

28 Chapter 5. partitura.score

partitura, Release 0.4.0

class partitura.score.GenericNote(id=None, voice=None, staff=None, sym-
bolic_duration=None, articulations=None,
doc_order=None)

Bases: partitura.score.TimedObject

Represents the common aspects of notes, rests, and unpitched notes.

Parameters

• id (str, optional (default: None)) – A string identifying the note. To be
compatible with the MusicXML format, the id must be unique within a part and must not
start with a number.

• voice (int, optional) – An integer representing the voice to which the note belongs.
Defaults to None.

• staff (str, optional) – An integer representing the staff to which the note belongs.
Defaults to None.

• doc_order (int, optional) – The document order index (zero-based), expressing
the order of appearance of this note (with respect to other notes) in the document in case the
Note belongs to a part that was imported from MusicXML. Defaults to None.

symbolic_duration
The symbolic duration of the note.

This property returns a dictionary specifying the symbolic duration of the note. The dictionary may have
the following keys:

• type : the note type as a string, e.g. ‘quarter’, ‘half’

• dots : an integer specifying the number of dots. When this key is missing it means there are no dots.

• actual_notes : Specifies the number of actual notes in a rhythmical tuplet. Used in conjunction with
normal_notes.

• normal_notes : Specifies the normal number of notes in a rhythmical tuplet. For example a triplet of
eights in the time of two eights would correspond to actual_notes=3, normal_notes=2.

The symbolic duration dictionary of a note can either be set manually (for example by specifying the
symbolic_duration constructor keyword argument), or left unspecified (i.e. None). In the latter case the
symbolic duration is estimated dynamically based on the note start and end times. Note that this latter
case is generally preferrable because it ensures that the symbolic duration is consistent with the numeric
duration.

If the symbolic duration cannot be estimated from the numeric duration None is returned.

Returns A dictionary specifying the symbolic duration of the note, or None if the symbolic
duration could not be estimated from the numeric duration.

Return type dict or None

end_tied
The Timepoint corresponding to the end of the note, or— when this note belongs to a group of tied
notes—the end of the last note in the group.

Returns End of note

Return type TimePoint

duration_tied
Time difference of the start of the note to the end of the note, or—when this note belongs to a group of tied
notes— the end of the last note in the group.

Returns Duration of note

29

partitura, Release 0.4.0

Return type int

duration_from_symbolic
Return the numeric duration given the symbolic duration of the note and the quarter_duration in effect.

Returns

Return type int or None

tie_prev_notes
TODO

Returns Description of return value

Return type type

tie_next_notes
TODO

Returns Description of return value

Return type type

iter_chord(same_duration=True, same_voice=True)
Iterate over notes with coinciding start times.

Parameters

• same_duration (bool, optional) – When True limit the iteration to notes that
have the same duration as the current note. Defaults to True.

• same_voice (bool, optional) – When True limit the iteration to notes that have
the same voice as the current note. Defaults to True.

Yields GenericNote

class partitura.score.Note(step, octave, alter=None, beam=None, **kwargs)
Bases: partitura.score.GenericNote

Subclass of GenericNote representing pitched notes.

Parameters

• step ({'C', 'D', 'E', 'F', 'G', 'A', 'B'}) – The note name of the pitch
(in upper case). If a lower case note name is given, it will be converted to upper case.

• octave (int) – An integer representing the octave of the pitch

• alter (int, optional) – An integer (or None) representing the alteration of the pitch
as follows:

-2 double flat

-1 flat

0 or None unaltered

1 sharp

2 double sharp

Defaults to None.

midi_pitch
The midi pitch value of the note (MIDI note number). C4 (middle C, in german: c’) is note number 60.

Returns The note’s pitch as MIDI note number.

30 Chapter 5. partitura.score

partitura, Release 0.4.0

Return type integer

alter_sign
The alteration of the note

Returns

Return type str

class partitura.score.Rest(*args, **kwargs)
Bases: partitura.score.GenericNote

A subclass of GenericNote representing a rest.

class partitura.score.Beam(id=None)
Bases: partitura.score.TimedObject

Represent beams (for MEI)

class partitura.score.GraceNote(grace_type, *args, steal_proportion=None, **kwargs)
Bases: partitura.score.Note

A subclass of Note representing a grace note.

Parameters

• grace_type ({'grace', 'acciaccatura', 'appoggiatura'}) – The type
of grace note. Use ‘grace’ for a unspecified grace note type.

• steal_proportion (float, optional) – The proportion of the previous (acciac-
catura) or next (appoggiatura) note duration that is occupied by the grace note. Defaults to
None.

main_note
The (non-grace) note to which this grace note belongs.

Type Note

grace_seq_len
The length of the sequence of grace notes to which this grace note belongs.

Type list

iter_grace_seq(backwards=False)
Iterate over this and all subsequent/preceding grace notes, excluding the main note.

Parameters backwards (bool, optional) – When True, iterate over preceding grace
notes. Otherwise iterate over subsequent grace notes. Defaults to False.

Yields GraceNote

class partitura.score.Page(number=0)
Bases: partitura.score.TimedObject

A page in a musical score. Its start and end times describe the range of musical time that is spanned by the page.

Parameters number (int, optional) – The number of the system. Defaults to 0.

number
See parameters

Type int

class partitura.score.System(number=0)
Bases: partitura.score.TimedObject

31

partitura, Release 0.4.0

A system in a musical score. Its start and end times describe the range of musical time that is spanned by the
system.

Parameters number (int, optional) – The number of the system. Defaults to 0.

number
See parameters

Type int

class partitura.score.Clef(number, sign, line, octave_change)
Bases: partitura.score.TimedObject

Clefs associate the lines of a staff to musical pitches.

Parameters

• number (int, optional) – The number of the staff to which this clef belongs.

• sign ({'G', 'F', 'C', 'percussion', 'TAB', 'jianpu', 'none'}) –
The sign of the clef

• line (int) – The staff line at which the sign is positioned

• octave_change (int) – The number of octaves to shift the pitches up (postive) or down
(negative)

nr
See parameters

Type int

sign
See parameters

Type {‘G’, ‘F’, ‘C’, ‘percussion’, ‘TAB’, ‘jianpu’, ‘none’}

line
See parameters

Type int

octave_change
See parameters

Type int

class partitura.score.Slur(start_note=None, end_note=None)
Bases: partitura.score.TimedObject

Slurs indicate musical grouping across notes.

Parameters

• start_note (Note, optional) – The note at which this slur starts. Defaults to None.

• end_note (Note, optional) – The note at which this slur ends. Defaults to None.

start_note
See parameters

Type Note or None

end_note
See parameters

Type Note or None

32 Chapter 5. partitura.score

partitura, Release 0.4.0

class partitura.score.Tuplet(start_note=None, end_note=None)
Bases: partitura.score.TimedObject

Tuplets indicate musical grouping across notes.

Parameters

• start_note (Note, optional) – The note at which this tuplet starts. Defaults to None.

• end_note (Note, optional) – The note at which this tuplet ends. Defaults to None.

start_note
See parameters

Type Note or None

end_note
See parameters

Type Note or None

class partitura.score.Repeat
Bases: partitura.score.TimedObject

Repeats represent a repeated section in the score, designated by its start and end times.

class partitura.score.DaCapo
Bases: partitura.score.TimedObject

A Da Capo sign.

class partitura.score.Fine
Bases: partitura.score.TimedObject

A Fine sign.

class partitura.score.Fermata(ref=None)
Bases: partitura.score.TimedObject

A Fermata sign.

Parameters ref (TimedObject or None, optional) – An object to which this fermata applies. In
practice this is a Note or a Barline. Defaults to None.

ref
See parameters

Type TimedObject or None

class partitura.score.Ending(number)
Bases: partitura.score.TimedObject

Class that represents one part of a 1—2— type ending of a musical passage (a.k.a Volta brackets).

Parameters number (int) – The number associated to this ending

number
See parameters

Type int

class partitura.score.Barline(style)
Bases: partitura.score.TimedObject

Class that represents the style of a barline

33

partitura, Release 0.4.0

class partitura.score.Measure(number=None)
Bases: partitura.score.TimedObject

A measure

Parameters number (int or None, optional) – The number of the measure. Defaults to
None

number
See parameters

Type int

page
The page number on which this measure appears, or None if there is no associated page.

Returns

Return type int or None

system
The system number in which this measure appears, or None if there is no associated system.

Returns

Return type int or None

class partitura.score.TimeSignature(beats, beat_type)
Bases: partitura.score.TimedObject

A time signature.

Parameters

• beats (int) – The number of beats in a measure

• beat_type (int) – The note type that defines the beat unit. (4 for quarter notes, 2 for
half notes, etc.)

beats
See parameters

Type int

beat_type
See parameters

Type int

class partitura.score.Tempo(bpm, unit=None)
Bases: partitura.score.TimedObject

A tempo indication.

Parameters

• bpm (number) – The tempo indicated in rate per minute

• unit (str or None, optional) – The unit to which the specified rate correspnds.
This is a string that expreses a duration category, such as “q” for quarter “h.” for dotted half,
and so on. When None, the unit is assumed to be quarters. Defaults to None.

bpm
See parameters

Type number

34 Chapter 5. partitura.score

partitura, Release 0.4.0

unit
See parameters

Type str or None

microseconds_per_quarter
The number of microseconds per quarter under this tempo.

This is useful for MIDI representations.

Returns

Return type int

class partitura.score.KeySignature(fifths, mode)
Bases: partitura.score.TimedObject

Key signature.

Parameters

• fifths (number) – Number of sharps (positive) or flats (negative)

• mode (str) – Mode of the key, either ‘major’ or ‘minor’

fifths
See parameters

Type number

mode
See parameters

Type str

name
The key signature name, where the root is uppercase, and an trailing ‘m’ indicates minor modes (e.g. ‘Am’,
‘G#’).

Returns The key signature name

Return type str

class partitura.score.Transposition(diatonic, chromatic)
Bases: partitura.score.TimedObject

Represents a <transpose> tag that tells how to change all (following) pitches of that part to put it to concert pitch
(i.e. sounding pitch).

Parameters

• diatonic (int) – TODO

• chromatic (int) – The number of semi-tone steps to add or subtract to the pitch to get
to the (sounding) concert pitch.

diatonic
See parameters

Type int

chromatic
See parameters

Type int

35

partitura, Release 0.4.0

class partitura.score.Words(text, staff=None)
Bases: partitura.score.TimedObject

A textual element in the score.

Parameters

• text (str) – The text

• staff (int or None, optional) – The staff to which the text is associated. De-
faults to None

text
See parameters

Type str

staff
See parameters

Type int or None, optional

class partitura.score.Direction(text=None, raw_text=None, staff=None)
Bases: partitura.score.TimedObject

Base class for performance directions in the score.

class partitura.score.LoudnessDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.Direction

class partitura.score.TempoDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.Direction

class partitura.score.ArticulationDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.Direction

class partitura.score.PedalDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.Direction

class partitura.score.ConstantDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.Direction

class partitura.score.DynamicDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.Direction

class partitura.score.ImpulsiveDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.Direction

class partitura.score.ConstantLoudnessDirection(text=None, raw_text=None,
staff=None)

Bases: partitura.score.ConstantDirection, partitura.score.LoudnessDirection

class partitura.score.ConstantTempoDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.ConstantDirection, partitura.score.TempoDirection

class partitura.score.ConstantArticulationDirection(text=None, raw_text=None,
staff=None)

Bases: partitura.score.ConstantDirection, partitura.score.
ArticulationDirection

class partitura.score.DynamicLoudnessDirection(*args, wedge=False, **kwargs)
Bases: partitura.score.DynamicDirection, partitura.score.LoudnessDirection

class partitura.score.DynamicTempoDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.DynamicDirection, partitura.score.TempoDirection

36 Chapter 5. partitura.score

partitura, Release 0.4.0

class partitura.score.IncreasingLoudnessDirection(*args, wedge=False, **kwargs)
Bases: partitura.score.DynamicLoudnessDirection

class partitura.score.DecreasingLoudnessDirection(*args, wedge=False, **kwargs)
Bases: partitura.score.DynamicLoudnessDirection

class partitura.score.IncreasingTempoDirection(text=None, raw_text=None,
staff=None)

Bases: partitura.score.DynamicTempoDirection

class partitura.score.DecreasingTempoDirection(text=None, raw_text=None,
staff=None)

Bases: partitura.score.DynamicTempoDirection

class partitura.score.ImpulsiveLoudnessDirection(text=None, raw_text=None,
staff=None)

Bases: partitura.score.ImpulsiveDirection, partitura.score.LoudnessDirection

class partitura.score.SustainPedalDirection(line=False, *args, **kwargs)
Bases: partitura.score.PedalDirection

Represents a Sustain Pedal Direction

class partitura.score.ResetTempoDirection(text=None, raw_text=None, staff=None)
Bases: partitura.score.ConstantTempoDirection

class partitura.score.PartGroup(group_symbol=None, group_name=None, number=None)
Bases: object

Represents a grouping of several instruments, usually named, and expressed in the score with a group symbol
such as a brace or a bracket. In symphonic scores, bracketed part groups usually group families of instruments,
such as woodwinds or brass, whereas braces are often used to group multiple instances of the same instrument.
See the MusicXML documentation for further information.

Parameters group_symbol (str or None, optional) – The symbol used for grouping
instruments.

group_symbol

Type str or None

name

Type str or None

number

Type int

parent

Type PartGroup or None

children

Type list of Part or PartGroup objects

pretty()
Return a pretty representation of this object.

Returns A pretty representation

Return type str

37

https://usermanuals.musicxml.com/MusicXML/Content/ST-MusicXML-group-symbol-value.htm

partitura, Release 0.4.0

note_array
A structured array containing pitch, onset, duration, voice and id for each note in each part of the Part-
Group. The note ids in this array include the number of the part to which they belong.

partitura.score.iter_unfolded_parts(part)
Iterate over unfolded clones of part.

For each repeat construct in part the iterator produces two clones, one with the repeat included and another
without the repeat. That means the number of items returned is two to the power of the number of repeat
constructs in the part.

The first item returned by the iterator is the version of the part without any repeated sections, the last item is the
version of the part with all repeat constructs expanded.

Parameters part (Part) – Part to unfold

partitura.score.unfold_part_maximal(part, update_ids=False)
Return the “maximally” unfolded part, that is, a copy of the part where all segments marked with repeat signs
are included twice.

Parameters

• part (Part) – The Part to unfold.

• update_ids (bool (optional)) – Update note ids to reflect the repetitions. Note
IDs will have a ‘-<repetition number>’, e.g., ‘n132-1’ and ‘n132-2’ represent the first and
second repetition of ‘n132’ in the input part. Defaults to False.

Returns unfolded_part – The unfolded Part

Return type Part

partitura.score.unfold_part_alignment(part, alignment)
Return the unfolded part given an alignment, that is, a copy of the part where the segments are repeated according
to the repetitions in a performance.

Parameters

• part (Part) – The Part to unfold.

• alignment (list of dictionaries) – List of dictionaries containing an alignment
(like the ones obtained from a MatchFile (see alignment_from_matchfile).

Returns unfolded_part – The unfolded Part

Return type Part

partitura.score.make_score_variants(part)
Create a list of ScoreVariant objects, each representing a distinct way to unfold the score, based on the repeat
structure.

Parameters part (Part) – A part for which to make the score variants

Returns List of ScoreVariant objects

Return type list

Notes

This function does not currently support nested repeats, such as in case 45d of the MusicXML Test Suite.

partitura.score.add_measures(part)
Add measures to a part.

38 Chapter 5. partitura.score

partitura, Release 0.4.0

This function adds Measure objects to the part according to any time signatures present in the part. Any existing
measures will be untouched, and added measures will be delimited by the existing measures.

The Part object will be modified in place.

Parameters part (Part) – Part instance

partitura.score.remove_grace_notes(part)
Remove all grace notes from a timeline.

The specified timeline object will be modified in place.

Parameters timeline (Timeline) – The timeline from which to remove the grace notes

partitura.score.expand_grace_notes(part)
Expand grace note durations in a part.

The specified part object will be modified in place.

Parameters part (Part) – The part on which to expand the grace notes

partitura.score.iter_parts(partlist)
Iterate over all Part instances in partlist, which is a list of either Part or PartGroup instances. PartGroup instances
contain one or more parts or further partgroups, and are traversed in a depth-first fashion.

This function is designed to take the result of partitura.load_score_midi() and partitura.
load_musicxml() as input.

Parameters partlist (list, Part, or PartGroup) – A partitura.score.Part
object, partitura.score.PartGroup or a list of these

Yields Part instances in partlist

partitura.score.repeats_to_start_end(repeats, first, last)
Return pairs of (start, end) TimePoints corresponding to the start and end times of each Repeat object. If any of
the start or end attributes are None, replace it with the end/start of the preceding/succeeding Repeat, respectively,
or first or last.

Parameters

• repeats (list) – list of Repeat instances, possibly with None-valued start/end attributes

• first (TimePoint) – The first TimePoint in the timeline

• last (TimePoint) – The last TimePoint in the timeline

Returns list of (start, end) TimePoints corresponding to each Repeat in repeats

Return type list

partitura.score.tie_notes(part)
Find notes that span measure boundaries and notes with composite durations, and split them adding ties.

Parameters part (Part) – Description of part

partitura.score.set_end_times(parts)
Set missing end times of musical elements in a part to equal the start times of the subsequent element of the
same class. This is useful for some classes

This function modifies the parts in place.

Parameters part (Part or PartGroup, or list of these) – Parts to be processed

partitura.score.find_tuplets(part)
Identify tuplets in part and set their symbolic durations explicitly.

This function adds actual_notes and normal_notes keys to the symbolic duration of tuplet notes.

39

partitura, Release 0.4.0

This function modifies the part in place.

Parameters part (Part) – Part instance

partitura.score.sanitize_part(part)
Find and remove incomplete structures in a part such as Tuplets and Slurs without start or end and grace notes
without a main note.

This function modifies the part in place.

Parameters part (Part) – Part instance

exception partitura.score.InvalidTimePointException(message=None)
Bases: Exception

Raised when a time point is instantiated with an invalid number.

40 Chapter 5. partitura.score

CHAPTER 6

partitura.performance

This module contains a lightweight ontology to represent a performance in a MIDI-like format. A performance is
defined at the highest level by a PerformedPart. This object contains performed notes as well as continuous
control parameters, such as sustain pedal.

class partitura.performance.PerformedPart(notes, id=None, part_name=None,
controls=None, programs=None, sus-
tain_pedal_threshold=64)

Bases: object

Represents a performed part, e.g. all notes and related controller/modifiers of one single instrument.

Performed notes are stored as a list of dictionaries, where each dictionary represents a performed note, should
have at least the keys “note_on”, “note_off”, the onset and offset times of the note in seconds, respectively.

Continuous controls are also stored as a list of dictionaries, where each dictionary represents a control change.
Each dictionary should have a key “type” (the name of the control, e.g. “sustain_pedal”, “soft_pedal”), “time”
(in seconds), and “value” (a number).

Parameters

• notes (list) – A list of dictionaries containing performed note information.

• id (str) – The identifier of the part

• controls (list) – A list of dictionaries containing continuous control information

• part_name (str) – Name for the part

• sustain_pedal_threshold (int) – The threshold above which sustain pedal values
are considered to be equivalent to on. For values below the threshold the sustain pedal is
treated as off. Defaults to 64.

notes
A list of dictionaries containing performed note information.

Type list

id
The identifier of the part

41

partitura, Release 0.4.0

Type str

part_name
Name for the part

Type str

controls
A list of dictionaries containing continuous control information

Type list

programs
List of dictionaries containing program change information

Type list

classmethod from_note_array(note_array, id=None, part_name=None)
Create an instance of PerformedPart from a note_array. Note that this property does not include non-note
information (i.e. controls such as sustain pedal).

note_array
Structured array containing performance information. The fields are ‘id’, ‘pitch’, ‘onset_div’, ‘dura-
tion_div’, ‘onset_sec’, ‘duration_sec’ and ‘velocity’.

sustain_pedal_threshold
The threshold value (number) above which sustain pedal values are considered to be equivalent to on. For
values below the threshold the sustain pedal is treated as off. Defaults to 64.

Based on the control items of type “sustain_pedal”, in combination with the value of the “sus-
tain_pedal_threshold” attribute, the note dictionaries will be extended with a key “sound_off”. This key
represents the time the note will stop sounding. When the sustain pedal is off, sound_off will coincide
with note_off. When the sustain pedal is on, sound_off will equal the earliest time the sustain pedal is
off after note_off. The sound_off values of notes will be automatically recomputed each time the sus-
tain_pedal_threshold is set.

42 Chapter 6. partitura.performance

CHAPTER 7

partitura.musicanalysis

Tools for music analysis.

partitura.musicanalysis.estimate_voices(note_info, monophonic_voices=False)

Voice estimation using the voice separation algorithm proposed in6.

Parameters

• note_info (structured array, Part or PerformedPart) – Note information as a Part or Per-
formedPart instances or as a structured array. If it is a structured array, it has to contain the
fields generated by the note_array properties of Part or PerformedPart objects. If the array
contains onset and duration information of both score and performance, (e.g., containing
both onset_beat and onset_sec), the score information will be preferred.

• monophonic_voices (bool) – If True voices are guaranteed to be monophonic. Other-
wise notes with the same onset and duration are treated as a chord and assigned to the same
voice. Defaults to False.

Returns voice – Voice for each note in the notearray. (The voices start with 1, as is the MusicXML
convention).

Return type numpy array

References

partitura.musicanalysis.estimate_key(note_info, method=’krumhansl’, *args, **kwargs)
Estimate key of a piece by comparing the pitch statistics of the note array to key profiles2,3.

Parameters
6 Chew, E. and Wu, Xiaodan (2004) “Separating Voices in Polyphonic Music: A Contig Mapping Approach”. In Uffe Kock, editor, “Computer

Music Modeling and Retrieval”. Springer Berlin Heidelberg.
2 Krumhansl, Carol L. (1990) “Cognitive foundations of musical pitch”, Oxford University Press, New York.
3 Temperley, D. (1999) “What’s key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered”. Music Perception. 17(1), pp.

65–100.

43

partitura, Release 0.4.0

• note_info (structured array, Part or PerformedPart) – Note information as a Part or Per-
formedPart instances or as a structured array. If it is a structured array, it has to contain the
fields generated by the note_array properties of Part or PerformedPart objects. If the array
contains onset and duration information of both score and performance, (e.g., containing
both onset_beat and onset_sec), the score information will be preferred.

• method ({'krumhansl'}) – Method for estimating the key. For now ‘krumhansl’ is the
only supported method.

• kwargs (args,) – Positional and Keyword arguments for the key estimation method

Returns String representing the key name (i.e., Root(alteration)(m if minor)). See parti-
tura.utils.key_name_to_fifths_mode and partitura.utils.fifths_mode_to_key_name.

Return type str

References

partitura.musicanalysis.estimate_spelling(note_info, method=’ps13s1’, **kwargs)
Estimate pitch spelling using the ps13 algorithm4,5.

Parameters

• note_info (structured array, Part or PerformedPart) – Note information as a Part or Per-
formedPart instances or as a structured array. If it is a structured array, it has to contain the
fields generated by the note_array properties of Part or PerformedPart objects. If the array
contains onset and duration information of both score and performance, (e.g., containing
both onset_beat and onset_sec), the score information will be preferred.

• method ({'ps13s1'}) – Pitch spelling algorithm. More methods will be added.

• **kwargs – Keyword arguments for the algorithm specified in method.

Returns spelling – Array with pitch spellings. The fields are ‘step’, ‘alter’ and ‘octave’

Return type structured array

References

partitura.musicanalysis.estimate_tonaltension(note_info, ws=1.0, ss=’onset’,
scale_factor=0.09249316305671976,
w=array([0.516, 0.315, 0.168]), al-
pha=0.75, beta=0.75)

Compute tonal tension ribbons defined in1

Parameters

• note_info (structured array, Part or PerformedPart) – Note information as a Part or
PerformedPart instances or as a structured array. If it is a structured array, it has to con-
tain the fields generated by the note_array properties of Part or PerformedPart objects.
If the array contains onset and duration information of both score and performance, (e.g.,
containing both onset_beat and onset_sec), the score information will be preferred. Fur-
thermore, this method requires pitch spelling and key signature information. If a struc-
tured note array is provided as input, this information can be optionally provided in fields

4 Meredith, D. (2006). “The ps13 Pitch Spelling Algorithm”. Journal of New Music Research, 35(2):121.
5 Meredith, D. (2019). “RecurSIA-RRT: Recursive translatable point-set pattern discovery with removal of redundant translators”. 12th Inter-

national Workshop on Machine Learning and Music. Würzburg, Germany.
1 D. Herremans and E. Chew (2016) Tension ribbons: Quantifying and visualising tonal tension. Proceedings of the Second International

Conference on Technologies for Music Notation and Representation (TENOR), Cambridge, UK.

44 Chapter 7. partitura.musicanalysis

partitura, Release 0.4.0

step, alter, ks_fifths and ks_mode. If these fields are not found in the input structured ar-
ray, they will be estimated using the key and pitch spelling estimation methods from parti-
tura.musicanalysis.estimate_key and and partitura.musicanalysis.estimate_spelling, respec-
tively.

• ws ({int, float, np.array}, optional) – Window size for computing the
tonal tension. If a number, it determines the size of the window centered at each specified
score position (see ss below). If a numpy array, a 2D array of shape (len(ss), 2) specifying
the left and right distance from each score position in ss. Default is 1 beat.

• ss ({float, int, np.array, 'onset'}, optional.) – Step size or score
position for computing the tonal tension features. If a number, this parameter determines
the size of the step (in beats) starting from the first score position. If an array, it specifies the
score positions at which the tonal tension is estimated. If ‘onset’, it computes the tension at
each unique score position (i.e., all notes in a chord have the same score position). Default
is ‘onset’.

• scale_factor (float) – A multiplicative scaling factor.

• w (np.ndarray) – Weights for the chords

• alpha (float) – Alpha.

• beta (float) – Beta.

Returns tonal_tension – Array containing the tonal tension features. It contains the fields
cloud_diameter, cloud_momentum, tensile_strain and onset.

Return type structured array

References

45

partitura, Release 0.4.0

46 Chapter 7. partitura.musicanalysis

CHAPTER 8

partitura.utils

partitura.utils.key_name_to_fifths_mode(name)
Return the number of sharps or flats and the mode of a key signature name. A negative number denotes the
number of flats (i.e. -3 means three flats), and a positive number the number of sharps. The mode is specified as
‘major’ or ‘minor’.

Parameters name ({"A", "A#m", "Ab", "Abm", "Am", "B", "Bb", "Bbm",
"Bm", "C","C#", "C#m", "Cb", "Cm", "D", "D#m", "Db", "Dm", "E",
"Eb","Ebm", "Em", "F", "F#", "F#m", "Fm", "G", "G#m", "Gb",
"Gm"}) – Name of the key signature

Returns Tuple containing the number of fifths and the mode

Return type (int, str)

Examples

>>> key_name_to_fifths_mode('Am')
(0, 'minor')
>>> key_name_to_fifths_mode('C')
(0, 'major')
>>> key_name_to_fifths_mode('A')
(3, 'major')

partitura.utils.fifths_mode_to_key_name(fifths, mode=None)
Return the key signature name corresponding to a number of sharps or flats and a mode. A negative value for
fifths denotes the number of flats (i.e. -3 means three flats), and a positive number the number of sharps. The
mode is specified as ‘major’ or ‘minor’. If mode is None, the key is assumed to be major.

Parameters

• fifths (int) – Number of fifths

• mode ({'major', 'minor', None, -1, 1}) – Mode of the key signature

Returns The name of the key signature, e.g. ‘Am’

47

partitura, Release 0.4.0

Return type str

Examples

>>> fifths_mode_to_key_name(0, 'minor')
'Am'
>>> fifths_mode_to_key_name(0, 'major')
'C'
>>> fifths_mode_to_key_name(3, 'major')
'A'
>>> fifths_mode_to_key_name(-1, 1)
'F'

partitura.utils.key_mode_to_int(mode)
Return the mode of a key as an integer (1 for major and -1 for minor).

Parameters mode ({'major', 'minor', None, 1, -1}) – Mode of the key

Returns Integer representation of the mode.

Return type int

partitura.utils.compute_pianoroll(note_info, time_unit=’auto’, time_div=’auto’, on-
set_only=False, note_separation=False, pitch_margin=-1,
time_margin=0, return_idxs=False, piano_range=False,
remove_drums=True)

Computes a piano roll from a structured note array (as generated by the note_array methods in parti-
tura.score.Part and partitura.performance.PerformedPart instances).

Parameters

• note_info (structured array, Part, PartGroup, PerformedPart) – Note information

• time_unit (('auto', 'beat', 'quarter', 'div', 'second')) –

• time_div (int, optional) – How many sub-divisions for each time unit (beats for a
score or seconds for a performance. See is_performance below).

• onset_only (bool, optional) – If True, code only the onsets of the notes, otherwise
code onset and duration.

• pitch_margin (int, optional) – If pitch_margin > -1, the resulting array will have
pitch_margin empty rows above and below the highest and lowest pitches, respectively; if
pitch_margin == -1, the resulting pianoroll will have span the fixed pitch range between
(and including) 1 and 127.

• time_margin (int, optional) – The resulting array will have time_margin *
time_div empty columns before and after the piano roll

• return_idxs (bool, optional) – If True, return the indices (i.e., the coordinates)
of each note in the piano roll.

• piano_range (bool, optional) – If True, the pitch axis of the piano roll is in piano
keys instead of MIDI note numbers (and there are only 88 pitches). This is equivalent as
slicing piano_range_pianoroll = pianoroll[21:109, :].

• remove_drums (bool, optional) – If True, removes the drum track (i.e., channel 9)
from the notes to be considered in the piano roll. This option is only relevant for piano rolls
generated from a PerformedPart. Default is True.

Returns

48 Chapter 8. partitura.utils

partitura, Release 0.4.0

• pianoroll (scipy.sparse.csr_matrix) – A sparse int matrix of size representing the pianoroll;
The first dimension is pitch, the second is time; The sizes of the dimensions vary with the
parameters pitch_margin, time_margin, and time_div

• pr_idx (ndarray) – Indices of the onsets and offsets of the notes in the piano roll (in the
same order as the input note_array). This is only returned if return_idxs is True.

Examples

>>> import numpy as np
>>> from partitura.utils import compute_pianoroll
>>> note_array = np.array([(60, 0, 1)], dtype=[('pitch',
→˓'i4'), ('onset_beat', 'f4'),
→˓ ('duration_beat', 'f4')])
>>> pr = compute_pianoroll(note_array, pitch_margin=2, time_div=2)
>>> pr.toarray()
array([[0, 0],

[0, 0],
[1, 1],
[0, 0],
[0, 0]])

Notes

The default values in this function assume that the input note_array represents a score.

partitura.utils.pianoroll_to_notearray(pianoroll, time_div=8, time_unit=’sec’)
Extract a structured note array from a piano roll.

For now, the structured note array is considered a “performance”.

Parameters

• pianoroll (array-like) – 2D array containing a piano roll. The first dimension is
pitch, and the second is time. The value of each “pixel” in the piano roll is considered to be
the MIDI velocity, and it is supposed to be between 0 and 127.

• time_div (int) – How many sub-divisions for each time unit (see notear-
ray_to_pianoroll).

• time_unit ({'beat', 'quarter', 'div', 'sec'}) – time unit of the output
note array.

Returns Structured array with pitch, onset, duration and velocity fields.

Return type np.ndarray

Notes

Please note that all non-zero pixels will contribute to a note. For the case of piano rolls with continuous values
between 0 and 1 (as might be the case of those piano rolls produced using probabilistic/generative models),
we recomend to either 1) hard- threshold the piano roll to have only 0s (note-off) or 1s (note- on) or, 2) soft-
threshold the notes (values below a certain threshold are considered as not active and scale the active notes to
lie between 1 and 127).

49

partitura, Release 0.4.0

50 Chapter 8. partitura.utils

Python Module Index

p
partitura, 17
partitura.musicanalysis, 43
partitura.performance, 41
partitura.score, 23
partitura.utils, 47

51

partitura, Release 0.4.0

52 Python Module Index

Index

A
add() (partitura.score.Part method), 25
add_ending_object() (partitura.score.TimePoint

method), 27
add_measures() (in module partitura.score), 38
add_starting_object() (parti-

tura.score.TimePoint method), 27
alter_sign (partitura.score.Note attribute), 31
ArticulationDirection (class in partitura.score),

36

B
Barline (class in partitura.score), 33
Beam (class in partitura.score), 31
beat_map (partitura.score.Part attribute), 24
beat_type (partitura.score.TimeSignature attribute),

34
beats (partitura.score.TimeSignature attribute), 34
bpm (partitura.score.Tempo attribute), 34

C
children (partitura.score.PartGroup attribute), 37
chromatic (partitura.score.Transposition attribute),

35
Clef (class in partitura.score), 32
compute_pianoroll() (in module partitura.utils),

48
ConstantArticulationDirection (class in par-

titura.score), 36
ConstantDirection (class in partitura.score), 36
ConstantLoudnessDirection (class in parti-

tura.score), 36
ConstantTempoDirection (class in parti-

tura.score), 36
controls (partitura.performance.PerformedPart at-

tribute), 42

D
DaCapo (class in partitura.score), 33

DecreasingLoudnessDirection (class in parti-
tura.score), 37

DecreasingTempoDirection (class in parti-
tura.score), 37

diatonic (partitura.score.Transposition attribute), 35
Direction (class in partitura.score), 36
duration (partitura.score.TimedObject attribute), 28
duration_from_symbolic (parti-

tura.score.GenericNote attribute), 30
duration_tied (partitura.score.GenericNote at-

tribute), 29
DynamicDirection (class in partitura.score), 36
DynamicLoudnessDirection (class in parti-

tura.score), 36
DynamicTempoDirection (class in partitura.score),

36

E
end (partitura.score.TimedObject attribute), 28
end_note (partitura.score.Slur attribute), 32
end_note (partitura.score.Tuplet attribute), 33
end_tied (partitura.score.GenericNote attribute), 29
Ending (class in partitura.score), 33
ending_objects (partitura.score.TimePoint at-

tribute), 27
estimate_key() (in module parti-

tura.musicanalysis), 43
estimate_spelling() (in module parti-

tura.musicanalysis), 44
estimate_tonaltension() (in module parti-

tura.musicanalysis), 44
estimate_voices() (in module parti-

tura.musicanalysis), 43
EXAMPLE_MIDI (in module partitura), 17
EXAMPLE_MUSICXML (in module partitura), 17
expand_grace_notes() (in module parti-

tura.score), 39

F
Fermata (class in partitura.score), 33

53

partitura, Release 0.4.0

fifths (partitura.score.KeySignature attribute), 35
fifths_mode_to_key_name() (in module parti-

tura.utils), 47
find_tuplets() (in module partitura.score), 39
Fine (class in partitura.score), 33
first_point (partitura.score.Part attribute), 26
from_note_array() (parti-

tura.performance.PerformedPart class
method), 42

G
GenericNote (class in partitura.score), 28
get_or_add_point() (partitura.score.Part method),

25
get_point() (partitura.score.Part method), 25
grace_seq_len (partitura.score.GraceNote at-

tribute), 31
GraceNote (class in partitura.score), 31
group_symbol (partitura.score.PartGroup attribute),

37

I
id (partitura.performance.PerformedPart attribute), 41
id (partitura.score.Part attribute), 23
ImpulsiveDirection (class in partitura.score), 36
ImpulsiveLoudnessDirection (class in parti-

tura.score), 37
IncreasingLoudnessDirection (class in parti-

tura.score), 36
IncreasingTempoDirection (class in parti-

tura.score), 37
inv_beat_map (partitura.score.Part attribute), 24
inv_quarter_map (partitura.score.Part attribute), 24
InvalidTimePointException, 40
iter_all() (partitura.score.Part method), 26
iter_chord() (partitura.score.GenericNote method),

30
iter_ending() (partitura.score.TimePoint method),

27
iter_grace_seq() (partitura.score.GraceNote

method), 31
iter_next() (partitura.score.TimePoint method), 28
iter_parts() (in module partitura.score), 39
iter_prev() (partitura.score.TimePoint method), 28
iter_starting() (partitura.score.TimePoint

method), 27
iter_unfolded_parts() (in module parti-

tura.score), 38

K
key_mode_to_int() (in module partitura.utils), 48
key_name_to_fifths_mode() (in module parti-

tura.utils), 47

key_signature_map (partitura.score.Part attribute),
24

KeySignature (class in partitura.score), 35

L
last_point (partitura.score.Part attribute), 26
line (partitura.score.Clef attribute), 32
load_match() (in module partitura), 21
load_musicxml() (in module partitura), 17
load_nakamuracorresp() (in module partitura),

22
load_nakamuramatch() (in module partitura), 22
load_performance_midi() (in module partitura),

20
load_score_midi() (in module partitura), 18
load_via_musescore() (in module partitura), 20
LoudnessDirection (class in partitura.score), 36

M
main_note (partitura.score.GraceNote attribute), 31
make_score_variants() (in module parti-

tura.score), 38
Measure (class in partitura.score), 33
microseconds_per_quarter (parti-

tura.score.Tempo attribute), 35
midi_pitch (partitura.score.Note attribute), 30
mode (partitura.score.KeySignature attribute), 35
musicxml_to_notearray() (in module partitura),

18

N
name (partitura.score.KeySignature attribute), 35
name (partitura.score.PartGroup attribute), 37
next (partitura.score.TimePoint attribute), 27
Note (class in partitura.score), 30
note_array (partitura.performance.PerformedPart at-

tribute), 42
note_array (partitura.score.PartGroup attribute), 37
notes (partitura.performance.PerformedPart attribute),

41
notes (partitura.score.Part attribute), 24
notes_tied (partitura.score.Part attribute), 24
nr (partitura.score.Clef attribute), 32
number (partitura.score.Ending attribute), 33
number (partitura.score.Measure attribute), 34
number (partitura.score.Page attribute), 31
number (partitura.score.PartGroup attribute), 37
number (partitura.score.System attribute), 32

O
octave_change (partitura.score.Clef attribute), 32

P
Page (class in partitura.score), 31

54 Index

partitura, Release 0.4.0

page (partitura.score.Measure attribute), 34
parent (partitura.score.PartGroup attribute), 37
Part (class in partitura.score), 23
part_abbreviation (partitura.score.Part attribute),

23
part_name (partitura.performance.PerformedPart at-

tribute), 42
part_name (partitura.score.Part attribute), 23
PartGroup (class in partitura.score), 37
partitura (module), 17
partitura.musicanalysis (module), 43
partitura.performance (module), 41
partitura.score (module), 23
partitura.utils (module), 47
PedalDirection (class in partitura.score), 36
PerformedPart (class in partitura.performance), 41
pianoroll_to_notearray() (in module parti-

tura.utils), 49
pretty() (partitura.score.Part method), 23
pretty() (partitura.score.PartGroup method), 37
prev (partitura.score.TimePoint attribute), 27
programs (partitura.performance.PerformedPart at-

tribute), 42

Q
quarter (partitura.score.TimePoint attribute), 27
quarter_duration_map (partitura.score.Part at-

tribute), 25
quarter_durations() (partitura.score.Part

method), 25
quarter_map (partitura.score.Part attribute), 24

R
ref (partitura.score.Fermata attribute), 33
remove() (partitura.score.Part method), 26
remove_ending_object() (parti-

tura.score.TimePoint method), 27
remove_grace_notes() (in module parti-

tura.score), 39
remove_starting_object() (parti-

tura.score.TimePoint method), 27
render() (in module partitura), 22
Repeat (class in partitura.score), 33
repeats_to_start_end() (in module parti-

tura.score), 39
ResetTempoDirection (class in partitura.score), 37
Rest (class in partitura.score), 31

S
sanitize_part() (in module partitura.score), 40
save_match() (in module partitura), 21
save_musicxml() (in module partitura), 17
save_performance_midi() (in module partitura),

21

save_score_midi() (in module partitura), 19
set_end_times() (in module partitura.score), 39
set_quarter_duration() (partitura.score.Part

method), 25
sign (partitura.score.Clef attribute), 32
Slur (class in partitura.score), 32
staff (partitura.score.Words attribute), 36
start (partitura.score.TimedObject attribute), 28
start_note (partitura.score.Slur attribute), 32
start_note (partitura.score.Tuplet attribute), 33
starting_objects (partitura.score.TimePoint at-

tribute), 27
sustain_pedal_threshold (parti-

tura.performance.PerformedPart attribute),
42

SustainPedalDirection (class in partitura.score),
37

symbolic_duration (partitura.score.GenericNote
attribute), 29

System (class in partitura.score), 31
system (partitura.score.Measure attribute), 34

T
t (partitura.score.TimePoint attribute), 27
Tempo (class in partitura.score), 34
TempoDirection (class in partitura.score), 36
text (partitura.score.Words attribute), 36
tie_next_notes (partitura.score.GenericNote

attribute), 30
tie_notes() (in module partitura.score), 39
tie_prev_notes (partitura.score.GenericNote

attribute), 30
time_signature_map (partitura.score.Part at-

tribute), 24
TimedObject (class in partitura.score), 28
TimePoint (class in partitura.score), 26
TimeSignature (class in partitura.score), 34
Transposition (class in partitura.score), 35
Tuplet (class in partitura.score), 32

U
unfold_part_alignment() (in module parti-

tura.score), 38
unfold_part_maximal() (in module parti-

tura.score), 38
unit (partitura.score.Tempo attribute), 34

W
Words (class in partitura.score), 35

Index 55

	Introduction
	Supported file types
	Conceptual Overview
	Relation to music21

	Usage
	Quick start: Reading note information from a MIDI file
	Importing MusicXML
	Displaying the typeset part
	Exporting a score to MusicXML
	Viewing the contents of a score
	Extracting note information from a Part
	Iterating over arbitrary musical objects
	Creating a musical score by hand
	Adding measures
	Splitting up notes using ties
	Removing elements
	Importing MIDI files
	Music Analysis

	Index
	partitura
	partitura.score
	partitura.performance
	partitura.musicanalysis
	partitura.utils
	Python Module Index
	Index

