

Partitura documentation

	Introduction
	Supported file types

	Conceptual Overview

	Relation to music21

	Usage
	Quick start: Reading note information from a MIDI file

	Importing MusicXML

	Displaying the typeset part

	Exporting a score to MusicXML

	Viewing the contents of a score

	Extracting note information from a Part

	Iterating over arbitrary musical objects

	Creating a musical score by hand

	Adding measures

	Splitting up notes using ties

	Removing elements

	Importing MIDI files

	Music Analysis

	Index

API Reference

	partitura

	partitura.score

	partitura.performance

	partitura.musicanalysis

	partitura.utils

Introduction

The principal aim of the partitura package is to handle richly structured
musical information as conveyed by modern staff music notation. It provides
a much wider range of possibilities to deal with music than the more
reductive (but very common) pianoroll-oriented approach inspired by the
MIDI standard.

Specifically, the package allows for representing a variety of information
in musical scores beyond the onset, duration and MIDI pitch numbers of
notes, such as:

	pitch spellings,

	symbolic duration categories,

	and voicing information.

Moreover, it supports musical notions that are not note-related, like:

	measures,

	tempo indications,

	performance directions,

	repeat structures,

	and time/key signatures.

In addition to handling score information, the package can load MIDI recordings of
performed scores, and alignments between scores and performances.

Supported file types

Musical data can be loaded from and saved to MusicXML and MIDI
files. Furthermore, partitura uses MuseScore [https://musescore.org/]
as a backend to load files in other formats, like MuseScore, MuseData,
and GuitarPro. This requires a working installation of MuseScore on your
computer.
MEI format is currently not supported, but support is planned for a future release.

Score-performance alignments can be read from different file types by
partitura. Firstly it supports reading from the Matchfile format used by
the publicly available Vienna4x22 piano corpus research dataset [https://repo.mdw.ac.at/projects/IWK/the_vienna_4x22_piano_corpus/data/index.html].
Secondly there is read support for Match and Corresp files produced by
Nakamura’s music alignment software [https://midialignment.github.io/demo.html].

Conceptual Overview

This section offers some conceptual and design considerations that may be
helpful when working with the package.

Representing score information

The package defines a musical ontology to describe musical
scores that roughly follows the elements defined by the MusicXML
specification [http://usermanuals.musicxml.com/MusicXML/MusicXML.htm].
More specifically, the elements of a musical score are represented as a
collection of instances of classes like Note, Measure, Slur, and
Rest. These instances are attached to an instance of class Part, which
corresponds to the role of an instrument in a musical score. A part may
contain one or more staffs, depending on the instrument.

In contrast to MusicXML documents, where musical time is largely implicit,
time plays a crucial role in the representation of scores in
partitura. Musical elements are associated to a Part instance by
specifying their start (and possibly end) times. The Part instance
thus acts as a timeline consisting of a number of discrete timepoints, each
of which holds references to the musical elements starting and ending at
that time. The musical elements themselves contain references to their
respective starting and ending timepoints. Other than that,
cross-references between musical elements are used sparingly, to keep the
API simple.

Musical elements in a Part can be filtered by class and iterated over,
either from a particular timepoint onward or backward, or within a
specified range. For example to find the measure to which a note belongs,
you would iterate backwards over elements of class Measure that start at or
before the start time of the note and select the first element of that
iteration.

Score vs. performance

Although the MIDI format can be used to represent both score-related
(key/time signatures, tempo) and performance-related information
(expressive timing, dynamics), partitura regards a MIDI file as a
representation of either a a score or a performance. Therefore is has
separate functions to load and save scores
(load_score_midi(), save_score_midi())
and performances (load_performance_midi(),
save_performance_midi()). load_score_midi()
offers simple quantization for unquantized MIDIs but in general you should
not expect a MIDI representation of a performance to be loaded correctly as
a Part instance.

Relation to music21 [https://web.mit.edu/music21/]

The music21 package has been around since 2008, and is one of the few
python packages available for working with symbolic musical data. It is
both more mature and more elaborate than partitura. The aims of
partitura are different from and more modest than those of music21,
which aims to provide a toolkit for computer-aided musicology. Instead,
partitura intends to provide a convenient way to work with symbolic
musical data in the context of problems such as musical expression
modeling, or music generation. Although it is not the main aim of the
package to provide music analysis tools, the package does offer
functionality for pitch spelling, voice assignment and key estimation.

Usage

In this Section we demonstrate basic usage of the package.

Quick start: Reading note information from a MIDI file

Before we present more in-depth usage of the package, we cover the common use case of reading note information from a MIDI file. The function midi_to_notearray() does exactly that: It loads the note information from the MIDI file MIDI into a structured numpy array [https://numpy.org/doc/stable/user/basics.rec.html] with attributes onset (in seconds), duration (in seconds), pitch, velocity, and ID (automatically generated).
For the purpose of this example we use a small MIDI file that comes with the partitura package. The path to the example MIDI file is stored as partitura.EXAMPLE_MIDI.

>>> import partitura
>>> path_to_midifile = partitura.EXAMPLE_MIDI
>>> note_array = partitura.midi_to_notearray(path_to_midifile)
>>> note_array # doctest: +NORMALIZE_WHITESPACE
array([(0., 2., 69, 64, 0, 1, 'n0'),
 (1., 1., 72, 64, 0, 2, 'n1'),
 (1., 1., 76, 64, 0, 2, 'n2')],
 dtype=[('onset_sec', '<f4'),
 ('duration_sec', '<f4'),
 ('pitch', '<i4'),
 ('velocity', '<i4'),
 ('track', '<i4'),
 ('channel', '<i4'),
 ('id', '<U256')])

The individual fields can be accessed using the field names as strings, e.g.:

>>> note_array["onset_sec"] # doctest: +NORMALIZE_WHITESPACE
array([0., 1., 1.], dtype=float32)

To access further information from MIDI files, such as time/key signatures, and control changes, see Importing MIDI files.

Importing MusicXML

As an example we take a MusicXML file with the following contents:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE score-partwise PUBLIC
 "-//Recordare//DTD MusicXML 3.1 Partwise//EN"
 "http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise>
 <part-list>
 <score-part id="P1">
 <part-name>Piano</part-name>
 </score-part>
 </part-list>
 <part id="P1">
 <!--===-->
 <measure number="1">
 <attributes>
 <divisions>12</divisions>
 <time>
 <beats>4</beats>
 <beat-type>4</beat-type>
 </time>
 </attributes>
 <print new-page="yes" new-system="yes"/>
 <note id="n01">
 <pitch>
 <step>A</step>
 <octave>4</octave>
 </pitch>
 <duration>48</duration>
 <voice>1</voice>
 <type>whole</type>
 <staff>2</staff>
 </note>
 <backup>
 <duration>48</duration>
 </backup>
 <note id="r01">
 <rest/>
 <duration>24</duration>
 <voice>2</voice>
 <type>half</type>
 <staff>1</staff>
 </note>
 <note id="n02">
 <pitch>
 <step>C</step>
 <octave>5</octave>
 </pitch>
 <duration>24</duration>
 <voice>2</voice>
 <type>half</type>
 <staff>1</staff>
 </note>
 <note id="n03">
 <chord/>
 <pitch>
 <step>E</step>
 <octave>5</octave>
 </pitch>
 <duration>24</duration>
 <voice>2</voice>
 <type>half</type>
 <staff>1</staff>
 </note>
 </measure>
 </part>
</score-partwise>

To load the score in python we first import the partitura package:

>>> import partitura

For convenience a MusicXML file with the above contents is included in the
package. The path to the file is stored as partitura.EXAMPLE_MUSICXML, so
that we load the above score as follows:

>>> path_to_musicxml = partitura.EXAMPLE_MUSICXML
>>> part = partitura.load_musicxml(path_to_musicxml)

Displaying the typeset part

The partitura.render() function displays the part as a typeset score:

>>> partitura.render(part)

[image: Score example]
This should open an image of the score in the default image viewing
application of your desktop. The function requires that either MuseScore [https://musescore.org/] or lilypond [http://lilypond.org/] is
installed on your computer.

Exporting a score to MusicXML

The partitura.save_musicxml() function exports score information to
MusicXML. The following line saves part to a file mypart.musicxml:

>>> partitura.save_musicxml(part, 'mypart.musicxml')

Viewing the contents of a score

The function load_musicxml() returns the score as a
Part instance. When we print it, it displays its
id and part-name:

>>> print(part)
Part id="P1" name="Piano"

To see all of the elements in the part at once, we can call its
pretty() method:

>>> print(part.pretty())
Part id="P1" name="Piano"
 │
 ├─ TimePoint t=0 quarter=12
 │ │
 │ └─ starting objects
 │ │
 │ ├─ 0--48 Measure number=1
 │ ├─ 0--48 Note id=n01 voice=1 staff=2 type=whole pitch=A4
 │ ├─ 0--48 Page number=1
 │ ├─ 0--24 Rest id=r01 voice=2 staff=1 type=half
 │ ├─ 0--48 System number=1
 │ └─ 0-- TimeSignature 4/4
 │
 ├─ TimePoint t=24 quarter=12
 │ │
 │ ├─ ending objects
 │ │ │
 │ │ └─ 0--24 Rest id=r01 voice=2 staff=1 type=half
 │ │
 │ └─ starting objects
 │ │
 │ ├─ 24--48 Note id=n02 voice=2 staff=1 type=half pitch=C5
 │ └─ 24--48 Note id=n03 voice=2 staff=1 type=half pitch=E5
 │
 └─ TimePoint t=48 quarter=12
 │
 └─ ending objects
 │
 ├─ 0--48 Measure number=1
 ├─ 0--48 Note id=n01 voice=1 staff=2 type=whole pitch=A4
 ├─ 24--48 Note id=n02 voice=2 staff=1 type=half pitch=C5
 ├─ 24--48 Note id=n03 voice=2 staff=1 type=half pitch=E5
 ├─ 0--48 Page number=1
 └─ 0--48 System number=1

This reveals that the part has three time points at which one or more musical
objects start or end. At t=0 there are several starting objects, including a
TimeSignature, Measure,
Page, and System.

Extracting note information from a Part

The notes in this part can be accessed through the notes property:

>>> part.notes
[<partitura.score.Note object at 0x...>,
 <partitura.score.Note object at 0x...>,
 <partitura.score.Note object at 0x...>]
>>> part.notes[0].duration # duration in divs
48

Alternatively, basic note attributes can be accessed through the note_array property:

>>> arr = part.note_array
>>> arr.dtype
dtype([('onset_beat', '<f4'),
 ('duration_beat', '<f4'),
 ('onset_quarter', '<f4'),
 ('duration_quarter', '<f4'),
 ('onset_div', '<i4'),
 ('duration_div', '<i4'),
 ('pitch', '<i4'),
 ('voice', '<i4'),
 ('id', '<U256')])

The onsets and durations of the notes are specified in various units of time.

>>> for pitch, onset, duration in arr[["pitch", "onset_beat", "duration_beat"]]:
... print(pitch, onset, duration)
69 0.0 4.0
72 2.0 2.0
76 2.0 2.0

Iterating over arbitrary musical objects

In the previous Section we used part.notes to obtain the notes in the part as a list.
This property is a shortcut for the following statement:

>>> list(part.iter_all(partitura.score.Note))
[<partitura.score.Note object at 0x...>,
 <partitura.score.Note object at 0x...>,
 <partitura.score.Note object at 0x...>]

That is, we iterate over all objects of class partitura.score.Note, and
store them in a list. The iter_all() method can be
used to iterate over objects of arbitrary classes in the part:

>>> for m in part.iter_all(partitura.score.Measure):
... print(m)
0--48 Measure number=1

The iter_all() method has a keyword
include_subclasses that indicates that we are also interested in any
subclasses of the specified class. For example, the following statement
iterates over all objects in the part:

>>> for m in part.iter_all(object, include_subclasses=True):
... print(m)
0--48 Note id=n01 voice=1 staff=2 type=whole pitch=A4
0--24 Rest id=r01 voice=2 staff=1 type=half
0--48 Page number=1
0--48 System number=1
0--48 Measure number=1
0-- TimeSignature 4/4
24--48 Note id=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note id=n03 voice=2 staff=1 type=half pitch=E5

This approach is useful for example when we want to retrieve rests in
addition to notes. Since rests and notes are both subclassess of
GenericNote, the following works:

>>> for m in part.iter_all(partitura.score.GenericNote, include_subclasses=True):
... print(m)
0--48 Note id=n01 voice=1 staff=2 type=whole pitch=A4
0--24 Rest id=r01 voice=2 staff=1 type=half
24--48 Note id=n02 voice=2 staff=1 type=half pitch=C5
24--48 Note id=n03 voice=2 staff=1 type=half pitch=E5

By default, include_subclasses is False.

Creating a musical score by hand

You can build a musical score from scratch, by creating a partitura.score.Part object. We
start by renaming the partitura.score module to score, for convenience:

>>> import partitura.score as score

Then we create an empty part with id ‘P0’ and name ‘My Part’ (the name is
optional, the id is mandatory), and a quarter note
duration of 10 units.

>>> part = score.Part('P0', 'My Part', quarter_duration=10)

Adding elements to the part is done by the
add() method, which takes a musical element,
a start and an end time. Either of the start and end arguments can be
omitted, but if both are omitted the method will do nothing.

We now add a 3/4 time signature at t=0, and three notes. The notes are
instantiated by specifying an (optional) id, pitch information, and an
(optional) voice:

>>> part.add(score.TimeSignature(3, 4), start=0)
>>> part.add(score.Note(id='n0', step='A', octave=4, voice=1), start=0, end=10)
>>> part.add(score.Note(id='n1', step='C', octave=5, alter=1, voice=2), start=0, end=10)
>>> part.add(score.Note(id='n2', step='C', octave=5, alter=1, voice=2), start=10, end=40)

Note that the duration of notes is not hard-coded in the Note instances, but
defined implicitly by their start and end times in the part.

Here’s what the part looks like:

>>> print(part.pretty())
Part id="P0" name="My Part"
 │
 ├─ TimePoint t=0 quarter=10
 │ │
 │ └─ starting objects
 │ │
 │ ├─ 0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
 │ ├─ 0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
 │ └─ 0-- TimeSignature 3/4
 │
 ├─ TimePoint t=10 quarter=10
 │ │
 │ ├─ ending objects
 │ │ │
 │ │ ├─ 0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
 │ │ └─ 0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
 │ │
 │ └─ starting objects
 │ │
 │ └─ 10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5
 │
 └─ TimePoint t=40 quarter=10
 │
 └─ ending objects
 │
 └─ 10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

We see that the notes n0, n1, and n2 have been correctly recognized as
quarter, quarter, and dotted half, respectively.

Let’s save the part to MusicXML:

>>> partitura.save_musicxml(part, 'mypart.musicxml')

When we look at the contents of mypart.musicxml, surprisingly, the <part></part> element is empty:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE score-partwise PUBLIC
 "-//Recordare//DTD MusicXML 3.1 Partwise//EN"
 "http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise>
 <part-list>
 <score-part id="P0">
 <part-name>My Part</part-name>
 </score-part>
 </part-list>
 <part id="P0"/>
</score-partwise>

The problem with our newly created part is that it contains no
measures. Since the MusicXML format requires musical elements to be
contained in measures, saving the part to MusicXML omits the objects we
added.

Adding measures

One option to add measures is to add them by hand like we’ve added the
notes and time signature. A more convenient alternative is to use the
function add_measures():

>>> score.add_measures(part)

This function uses the time signature information in the part to add
measures accordingly:

>>> print(part.pretty())
Part id="P0" name="My Part"
 │
 ├─ TimePoint t=0 quarter=10
 │ │
 │ └─ starting objects
 │ │
 │ ├─ 0--30 Measure number=1
 │ ├─ 0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
 │ ├─ 0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
 │ └─ 0-- TimeSignature 3/4
 │
 ├─ TimePoint t=10 quarter=10
 │ │
 │ ├─ ending objects
 │ │ │
 │ │ ├─ 0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
 │ │ └─ 0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
 │ │
 │ └─ starting objects
 │ │
 │ └─ 10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5
 │
 ├─ TimePoint t=30 quarter=10
 │ │
 │ ├─ ending objects
 │ │ │
 │ │ └─ 0--30 Measure number=1
 │ │
 │ └─ starting objects
 │ │
 │ └─ 30--40 Measure number=2
 │
 └─ TimePoint t=40 quarter=10
 │
 └─ ending objects
 │
 ├─ 30--40 Measure number=2
 └─ 10--40 Note id=n2 voice=2 staff=None type=half. pitch=C#5

Let’s see what our part with measures looks like in typeset form:

>>> partitura.render(part)

[image: Part with measures]
Although the notes are there, the music is not typeset correctly, since the
first measure should have a duration of three quarter notes, but instead is
has a duration of four quarter notes. The problem is that the note n2
crosses a measure boundary, and thus should be tied.

Splitting up notes using ties

In musical notation notes that span measure boundaries are split up, and then
tied together. This can be done automatically using the function
tie_notes():

>>> score.tie_notes(part)
>>> partitura.render(part)

[image: Part with measures]
Now the score looks correct. Displaying the contents reveals that the part
now has an extra quarter note n2a that starts at the measure boundary,
whereas the note n2 is now a half note, ending at the measure boundary.

>>> print(part.pretty())
Part id="P0" name="My Part"
 │
 ├─ TimePoint t=0 quarter=10
 │ │
 │ └─ starting objects
 │ │
 │ ├─ 0--30 Measure number=1
 │ ├─ 0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
 │ ├─ 0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
 │ └─ 0-- TimeSignature 3/4
 │
 ├─ TimePoint t=10 quarter=10
 │ │
 │ ├─ ending objects
 │ │ │
 │ │ ├─ 0--10 Note id=n0 voice=1 staff=None type=quarter pitch=A4
 │ │ └─ 0--10 Note id=n1 voice=2 staff=None type=quarter pitch=C#5
 │ │
 │ └─ starting objects
 │ │
 │ └─ 10--30 Note id=n2 voice=2 staff=None type=half tie_group=n2+n2a pitch=C#5
 │
 ├─ TimePoint t=30 quarter=10
 │ │
 │ ├─ ending objects
 │ │ │
 │ │ ├─ 0--30 Measure number=1
 │ │ └─ 10--30 Note id=n2 voice=2 staff=None type=half tie_group=n2+n2a pitch=C#5
 │ │
 │ └─ starting objects
 │ │
 │ ├─ 30--40 Measure number=2
 │ └─ 30--40 Note id=n2a voice=2 staff=None type=quarter tie_group=n2+n2a pitch=C#5
 │
 └─ TimePoint t=40 quarter=10
 │
 └─ ending objects
 │
 ├─ 30--40 Measure number=2
 └─ 30--40 Note id=n2a voice=2 staff=None type=quarter tie_group=n2+n2a pitch=C#5

Removing elements

Just like we can add elements to a part, we can also remove them, using the
remove() method. The following lines remove the
measure instances that were added using the
add_measures() function:

>>> for measure in list(part.iter_all(score.Measure)):
... part.remove(measure)

Note that we create a list of all measures in part before we remove them. This is necessary to avoid changing the contents of part while we iterate over it.

Importing MIDI files

For quick access to note information from a MIDI file, use the function midi_to_notearray(), as described in Quick start: Reading note information from a MIDI file. In addition to this function, which returns a structured numpy array, partitura provides two further functions to load information from MIDI files, depending on whether the information should be treated as a performance or as a score (see introduction.html#score-vs-performance):

	load_performance_midi()

	load_score_midi()

The load_performance_midi() returns a PerformedPart instance.
The PerformedPart instance stores notes, program change and control change messages.
The notes in notes are dictionaries with the usual MIDI attributes “midi_pitch”, “note_on”, “note_off”, etc. Additionally, there is a key called “sound_off” which returns note_off times adjusted by the sustain pedal. Set the on/off threshold value for the sustain_pedal MIDI cc message like so:

>>> path_to_midifile = partitura.EXAMPLE_MIDI
>>> performedpart = partitura.load_performance_midi(path_to_midifile)
>>> performedpart.sustain_pedal_threshold=64

Setting the sustain pedal threshold to 128 will prevent the change of “sound_off” values by sustain pedal.
When the MIDI file does not contain any pedal information, the “sound_off” is equal to “note_off”, and setting sustain_pedal_threshold has no effect.
Calling note_array will return a structured array like midi_to_notearray().
The values in note_array[“duration_sec”] are the actual duration of the note based on the sound_off time.

The function load_score_midi() returns a Part instance.
The function estimates the score structure based on the “parts per quarter” value and the note_on/note_off times in a MIDI file.
This function only works with deadpan “score” MIDI files that can be generated by Digital Audio Workstations, Scorewriters, and other sequencers.
It is not suitable to estimate the score from a performed MIDI file, such as a recording of a pianist playing on a MIDI keyboard.

>>> midipart = partitura.load_score_midi(path_to_midifile)
>>> midipart.note_array # doctest: +NORMALIZE_WHITESPACE
 array([(0., 4., 0., 4., 0, 48, 69, 1, 'n0'),
 (2., 2., 2., 2., 24, 24, 72, 2, 'n1'),
 (2., 2., 2., 2., 24, 24, 76, 2, 'n2')],
 dtype=[('onset_beat', '<f4'),
 ('duration_beat', '<f4'),
 ('onset_quarter', '<f4'),
 ('duration_quarter', '<f4'),
 ('onset_div', '<i4'),
 ('duration_div', '<i4'),
 ('pitch', '<i4'),
 ('voice', '<i4'),
 ('id', '<U256')])

The note_array of a part is a structured array similar to the one of the
PerformedPart instance, but the first 6 fields
refer to onset and duration in score time. The score MIDI function correctly
identifies the note lengths of a whole note and two half notes. However, the
position of the first measure bar (as well as other score properties) is only an
estimate as a “score” MIDI file of a score that begins with a tied quarter note
in an anacrusis measure would look exactly the same in the MIDI encoding.

Music Analysis

The package offers tools for various types music analysis, including key estimation, tonal tension estimation, voice separation, and pitch spelling. The functions take the note information of in the form of an instance of
Part, PartGroup, or PerformedPart, a list of Part objects or a structured numpy array [https://numpy.org/doc/stable/user/basics.rec.html], as returned by the note_array attribute.

Key Estimation

Key estimation is performed by the function
estimate_key(). The function returns a string representation of the root and mode of the key:

>>> key_name = partitura.musicanalysis.estimate_key(part.note_array)
>>> print(key_name)
C#m

The number of sharps/flats and the mode can be inferred from the key name using the convenience function key_name_to_fifths_mode():

>>> partitura.utils.key_name_to_fifths_mode(key_name)
(4, 'minor')

Pitch Spelling

Pitch spelling estimation is performed by the function
estimate_spelling(). The function returns a structured array with pitch spelling information (i.e., with fields step, alter and octave) for each note in the input note_array. If the input to this method is an instance of Part, PartGroup, or PerformedPart, a list of Part, each row of the output corresponds to order of the notes in the note_array that would be generated by using the helper method ensure_notearray().

>>> pitch_spelling = partitura.musicanalysis.estimate_spelling(part.note_array)
>>> print(pitch_spelling)
[('A', 0, 4) ('C', 1, 5) ('C', 1, 5)]

Voice Estimation

Voice estimation is performed by the function
estimate_voices(). The function returns a numpy array with voice information for each note in the input note_array. If the input to this method is an instance of Part, PartGroup, or PerformedPart, a list of Part, each row of the output corresponds to order of the notes in the note_array that would be generated by using the helper method ensure_notearray().

>>> voices = partitura.musicanalysis.estimate_voices(part.note_array)
>>> print(voices)
[1 1 1]

Tonal Tension

Three tonal tension features proposed by Herremans and Chew (2016) are estimated by the function
estimate_tonaltension(). The function returns a strured array with fields cloud_diameter, cloud_momentum, tensile_strain and onset. In contrast to the other methods in partitura.musicanalysis, the tonal tension features are not computed for each note, but for specific time points, which are specified by argument ss, which can be a float specifying the step size, a 1D numpy array with time values, or ‘onset’, which computes the tension features at each unique onset time.

>>> import numpy as np
>>> tonal_tension = partitura.musicanalysis.estimate_tonaltension(part, ss='onset')
>>> print(np.unique(part.note_array['onset_beat']))
[0. 1.]
>>> print(tonal_tension.dtype.names)
('onset_beat', 'cloud_diameter', 'cloud_momentum', 'tensile_strain')
>>> print(tonal_tension['cloud_momentum'])
[0. 0.16666667]

>>> partitura.musicanalysis.estimate_spelling(part.note_array) # doctest: +NORMALIZE_WHITESPACE
array([('A', 0, 4), ('C', 1, 5), ('C', 1, 5)],
 dtype=[('step', '<U1'), ('alter', '<i8'), ('octave', '<i8')])

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	add() (partitura.score.Part method)

 	add_ending_object() (partitura.score.TimePoint method)

 	add_measures() (in module partitura.score)

 	
 	add_starting_object() (partitura.score.TimePoint method)

 	alter_sign (partitura.score.Note attribute)

 	ArticulationDirection (class in partitura.score)

B

 	
 	Barline (class in partitura.score)

 	Beam (class in partitura.score)

 	beat_map (partitura.score.Part attribute)

 	
 	beat_type (partitura.score.TimeSignature attribute)

 	beats (partitura.score.TimeSignature attribute)

 	bpm (partitura.score.Tempo attribute)

C

 	
 	children (partitura.score.PartGroup attribute)

 	chromatic (partitura.score.Transposition attribute)

 	Clef (class in partitura.score)

 	compute_pianoroll() (in module partitura.utils)

 	
 	ConstantArticulationDirection (class in partitura.score)

 	ConstantDirection (class in partitura.score)

 	ConstantLoudnessDirection (class in partitura.score)

 	ConstantTempoDirection (class in partitura.score)

 	controls (partitura.performance.PerformedPart attribute)

D

 	
 	DaCapo (class in partitura.score)

 	DecreasingLoudnessDirection (class in partitura.score)

 	DecreasingTempoDirection (class in partitura.score)

 	diatonic (partitura.score.Transposition attribute)

 	Direction (class in partitura.score)

 	
 	duration (partitura.score.TimedObject attribute)

 	duration_from_symbolic (partitura.score.GenericNote attribute)

 	duration_tied (partitura.score.GenericNote attribute)

 	DynamicDirection (class in partitura.score)

 	DynamicLoudnessDirection (class in partitura.score)

 	DynamicTempoDirection (class in partitura.score)

E

 	
 	end (partitura.score.TimedObject attribute)

 	end_note (partitura.score.Slur attribute)

 	(partitura.score.Tuplet attribute)

 	end_tied (partitura.score.GenericNote attribute)

 	Ending (class in partitura.score)

 	ending_objects (partitura.score.TimePoint attribute)

 	
 	estimate_key() (in module partitura.musicanalysis)

 	estimate_spelling() (in module partitura.musicanalysis)

 	estimate_tonaltension() (in module partitura.musicanalysis)

 	estimate_voices() (in module partitura.musicanalysis)

 	EXAMPLE_MIDI (in module partitura)

 	EXAMPLE_MUSICXML (in module partitura)

 	expand_grace_notes() (in module partitura.score)

F

 	
 	Fermata (class in partitura.score)

 	fifths (partitura.score.KeySignature attribute)

 	fifths_mode_to_key_name() (in module partitura.utils)

 	
 	find_tuplets() (in module partitura.score)

 	Fine (class in partitura.score)

 	first_point (partitura.score.Part attribute)

 	from_note_array() (partitura.performance.PerformedPart class method)

G

 	
 	GenericNote (class in partitura.score)

 	get_or_add_point() (partitura.score.Part method)

 	get_point() (partitura.score.Part method)

 	
 	grace_seq_len (partitura.score.GraceNote attribute)

 	GraceNote (class in partitura.score)

 	group_symbol (partitura.score.PartGroup attribute)

I

 	
 	id (partitura.performance.PerformedPart attribute)

 	(partitura.score.Part attribute)

 	ImpulsiveDirection (class in partitura.score)

 	ImpulsiveLoudnessDirection (class in partitura.score)

 	IncreasingLoudnessDirection (class in partitura.score)

 	IncreasingTempoDirection (class in partitura.score)

 	inv_beat_map (partitura.score.Part attribute)

 	inv_quarter_map (partitura.score.Part attribute)

 	InvalidTimePointException

 	
 	iter_all() (partitura.score.Part method)

 	iter_chord() (partitura.score.GenericNote method)

 	iter_ending() (partitura.score.TimePoint method)

 	iter_grace_seq() (partitura.score.GraceNote method)

 	iter_next() (partitura.score.TimePoint method)

 	iter_parts() (in module partitura.score)

 	iter_prev() (partitura.score.TimePoint method)

 	iter_starting() (partitura.score.TimePoint method)

 	iter_unfolded_parts() (in module partitura.score)

K

 	
 	key_mode_to_int() (in module partitura.utils)

 	key_name_to_fifths_mode() (in module partitura.utils)

 	
 	key_signature_map (partitura.score.Part attribute)

 	KeySignature (class in partitura.score)

L

 	
 	last_point (partitura.score.Part attribute)

 	line (partitura.score.Clef attribute)

 	load_match() (in module partitura)

 	load_musicxml() (in module partitura)

 	load_nakamuracorresp() (in module partitura)

 	
 	load_nakamuramatch() (in module partitura)

 	load_performance_midi() (in module partitura)

 	load_score_midi() (in module partitura)

 	load_via_musescore() (in module partitura)

 	LoudnessDirection (class in partitura.score)

M

 	
 	main_note (partitura.score.GraceNote attribute)

 	make_score_variants() (in module partitura.score)

 	Measure (class in partitura.score)

 	
 	microseconds_per_quarter (partitura.score.Tempo attribute)

 	midi_pitch (partitura.score.Note attribute)

 	mode (partitura.score.KeySignature attribute)

 	musicxml_to_notearray() (in module partitura)

N

 	
 	name (partitura.score.KeySignature attribute)

 	(partitura.score.PartGroup attribute)

 	next (partitura.score.TimePoint attribute)

 	Note (class in partitura.score)

 	note_array (partitura.performance.PerformedPart attribute)

 	(partitura.score.PartGroup attribute)

 	notes (partitura.performance.PerformedPart attribute)

 	(partitura.score.Part attribute)

 	
 	notes_tied (partitura.score.Part attribute)

 	nr (partitura.score.Clef attribute)

 	number (partitura.score.Ending attribute)

 	(partitura.score.Measure attribute)

 	(partitura.score.Page attribute)

 	(partitura.score.PartGroup attribute)

 	(partitura.score.System attribute)

O

 	
 	octave_change (partitura.score.Clef attribute)

P

 	
 	Page (class in partitura.score)

 	page (partitura.score.Measure attribute)

 	parent (partitura.score.PartGroup attribute)

 	Part (class in partitura.score)

 	part_abbreviation (partitura.score.Part attribute)

 	part_name (partitura.performance.PerformedPart attribute)

 	(partitura.score.Part attribute)

 	PartGroup (class in partitura.score)

 	partitura (module)

 	partitura.musicanalysis (module)

 	
 	partitura.performance (module)

 	partitura.score (module)

 	partitura.utils (module)

 	PedalDirection (class in partitura.score)

 	PerformedPart (class in partitura.performance)

 	pianoroll_to_notearray() (in module partitura.utils)

 	pretty() (partitura.score.Part method)

 	(partitura.score.PartGroup method)

 	prev (partitura.score.TimePoint attribute)

 	programs (partitura.performance.PerformedPart attribute)

Q

 	
 	quarter (partitura.score.TimePoint attribute)

 	quarter_duration_map (partitura.score.Part attribute)

 	
 	quarter_durations() (partitura.score.Part method)

 	quarter_map (partitura.score.Part attribute)

R

 	
 	ref (partitura.score.Fermata attribute)

 	remove() (partitura.score.Part method)

 	remove_ending_object() (partitura.score.TimePoint method)

 	remove_grace_notes() (in module partitura.score)

 	remove_starting_object() (partitura.score.TimePoint method)

 	
 	render() (in module partitura)

 	Repeat (class in partitura.score)

 	repeats_to_start_end() (in module partitura.score)

 	ResetTempoDirection (class in partitura.score)

 	Rest (class in partitura.score)

S

 	
 	sanitize_part() (in module partitura.score)

 	save_match() (in module partitura)

 	save_musicxml() (in module partitura)

 	save_performance_midi() (in module partitura)

 	save_score_midi() (in module partitura)

 	set_end_times() (in module partitura.score)

 	set_quarter_duration() (partitura.score.Part method)

 	sign (partitura.score.Clef attribute)

 	Slur (class in partitura.score)

 	
 	staff (partitura.score.Words attribute)

 	start (partitura.score.TimedObject attribute)

 	start_note (partitura.score.Slur attribute)

 	(partitura.score.Tuplet attribute)

 	starting_objects (partitura.score.TimePoint attribute)

 	sustain_pedal_threshold (partitura.performance.PerformedPart attribute)

 	SustainPedalDirection (class in partitura.score)

 	symbolic_duration (partitura.score.GenericNote attribute)

 	System (class in partitura.score)

 	system (partitura.score.Measure attribute)

T

 	
 	t (partitura.score.TimePoint attribute)

 	Tempo (class in partitura.score)

 	TempoDirection (class in partitura.score)

 	text (partitura.score.Words attribute)

 	tie_next_notes (partitura.score.GenericNote attribute)

 	tie_notes() (in module partitura.score)

 	
 	tie_prev_notes (partitura.score.GenericNote attribute)

 	time_signature_map (partitura.score.Part attribute)

 	TimedObject (class in partitura.score)

 	TimePoint (class in partitura.score)

 	TimeSignature (class in partitura.score)

 	Transposition (class in partitura.score)

 	Tuplet (class in partitura.score)

U

 	
 	unfold_part_alignment() (in module partitura.score)

 	
 	unfold_part_maximal() (in module partitura.score)

 	unit (partitura.score.Tempo attribute)

W

 	
 	Words (class in partitura.score)

partitura

The top level of the package contains functions to load and save
data, display rendered scores, and functions to estimate pitch
spelling, voice assignment, and key signature.

	
partitura.EXAMPLE_MUSICXML = '/home/docs/.cache/Python-Eggs/partitura-0.4.0-py3.7.egg-tmp/partitura/assets/score_example.musicxml'

	An example MusicXML file for didactic purposes

	
partitura.EXAMPLE_MIDI = '/home/docs/.cache/Python-Eggs/partitura-0.4.0-py3.7.egg-tmp/partitura/assets/score_example.mid'

	An example MIDI file for didactic purposes

	
partitura.load_musicxml(xml, ensure_list=False, validate=False, force_note_ids=None)

	Parse a MusicXML file and build a composite score ontology
structure from it (see also scoreontology.py).

	Parameters

	
	xml (str or file-like object) – Path to the MusicXML file to be parsed, or a file-like object

	ensure_list (bool, optional) – When True return a list independent of how many part or
partgroup elements were created from the MIDI file. By
default, when the return value of load_musicxml produces a

	single (class:partitura.score.Part or) – partitura.score.PartGroup element, the element itself
is returned instead of a list containing the element. Defaults
to False.

	validate (bool, optional) – When True the validity of the MusicXML is checked against the
MusicXML 3.1 specification before loading the file. An
exception will be raised when the MusicXML is invalid.
Defaults to False.

	force_note_ids ((bool, 'keep') optional.) – When True each Note in the returned Part(s) will have a newly
assigned unique id attribute. Existing note id attributes in
the MusicXML will be discarded. If ‘keep’, only notes without
a note id will be assigned one.

	Returns

	partlist – A list of either Part or PartGroup objects

	Return type

	list

	
partitura.save_musicxml(parts, out=None)

	Save a one or more Part or PartGroup instances in MusicXML format.

	Parameters

	
	parts (list, Part, or PartGroup) – A partitura.score.Part object,
partitura.score.PartGroup or a list of these

	out (str, file-like object, or None, optional) – Output file

	Returns

	If no output file is specified using out the function returns the
MusicXML data as a string. Otherwise the function returns None.

	Return type

	None or str

	
partitura.musicxml_to_notearray(fn, flatten_parts=True, include_pitch_spelling=False, include_key_signature=False, include_time_signature=False)

	Return pitch, onset, and duration information for notes from a
MusicXML file as a structured array.

By default a single array is returned by combining the note
information of all parts in the MusicXML file.

	Parameters

	
	fn (str) – Path to a MusicXML file

	flatten_parts (bool) – If True, returns a single array containing all notes.
Otherwise, returns a list of arrays for each part.

	include_pitch_spelling (bool (optional)) – If True, includes pitch spelling information for each
note. Default is False

	include_key_signature (bool (optional)) – If True, includes key signature information, i.e.,
the key signature at the onset time of each note (all
notes starting at the same time have the same key signature).
Default is False

	include_time_signature (bool (optional)) – If True, includes time signature information, i.e.,
the time signature at the onset time of each note (all
notes starting at the same time have the same time signature).
Default is False

	Returns

	score – Structured array or list of structured arrays containing
score information.

	Return type

	structured array or list of structured arrays

	
partitura.load_score_midi(fn, part_voice_assign_mode=0, ensure_list=False, quantization_unit=None, estimate_voice_info=True, estimate_key=False, assign_note_ids=True)

	Load a musical score from a MIDI file and return it as a Part
instance.

This function interprets MIDI information as describing a score.
Pitch names are estimated using Meredith’s PS13 algorithm 1.
Assignment of notes to voices can either be done using Chew and
Wu’s voice separation algorithm 2, or by choosing one of the
part/voice assignment modes that assign voices based on
track/channel information. Furthermore, the key signature can be
estimated based on Krumhansl’s 1990 key profiles 3.

This function expects times to be metrical/quantized. Optionally a
quantization unit may be specified. If you wish to access the non-
quantized time of MIDI events you may wish to used the
load_performance_midi function instead.

	Parameters

	
	fn (str) – Path to MIDI file

	part_voice_assign_mode ({0, 1, 2, 3, 4, 5}, optional) – This keyword controls how part and voice information is
associated to track and channel information in the MIDI file.
The semantics of the modes is as follows:

	0

	Return one Part per track, with voices assigned by channel

	1

	Return one PartGroup per track, with Parts assigned by channel
(no voices)

	2

	Return single Part with voices assigned by track (tracks are
combined, channel info is ignored)

	3

	Return one Part per track, without voices (channel info is
ignored)

	4

	Return single Part without voices (channel and track info is
ignored)

	5

	Return one Part per <track, channel> combination, without
voices Defaults to 0.

	ensure_list (bool, optional) – When True, return a list independent of how many part or partgroup
elements were created from the MIDI file. By default, when the
return value of load_score_midi produces a single
partitura.score.Part or partitura.score.PartGroup
element, the element itself is returned instead of a list
containing the element. Defaults to False.

	quantization_unit (integer or None, optional) – Quantize MIDI times to multiples of this unit. If None, the
quantization unit is chosen automatically as the smallest
division of the parts per quarter (MIDI “ticks”) that can be
represented as a symbolic duration. Defaults to None.

	estimate_key (bool, optional) – When True use Krumhansl’s 1990 key profiles 3 to determine
the most likely global key, discarding any key information in
the MIDI file.

	estimate_voice_info (bool, optional) – When True use Chew and Wu’s voice separation algorithm 2 to
estimate voice information. This option is ignored for
part/voice assignment modes that infer voice information from
the track/channel info (i.e. part_voice_assign_mode equals
1, 3, 4, or 5). Defaults to True.

	Returns

	One or more part or partgroup objects

	Return type

	partitura.score.Part, partitura.score.PartGroup, or a list of these

References

	1

	Meredith, D. (2006). “The ps13 Pitch Spelling Algorithm”. Journal
of New Music Research, 35(2):121.

	2(1,2)

	Chew, E. and Wu, Xiaodan (2004) “Separating Voices in
Polyphonic Music: A Contig Mapping Approach”. In Uffe Kock,
editor, Computer Music Modeling and Retrieval (CMMR), pp. 1–20,
Springer Berlin Heidelberg.

	3(1,2)

	Krumhansl, Carol L. (1990) “Cognitive foundations of musical pitch”,
Oxford University Press, New York.

	
partitura.save_score_midi(parts, out, part_voice_assign_mode=0, velocity=64, anacrusis_behavior='shift')

	Write data from Part objects to a MIDI file

	Parameters

	
	parts (Part, PartGroup or list of these) – The musical score to be saved.

	out (str or file-like object) – Either a filename or a file-like object to write the MIDI data
to.

	part_voice_assign_mode ({0, 1, 2, 3, 4, 5}, optional) – This keyword controls how part and voice information is
associated to track and channel information in the MIDI file.
The semantics of the modes is as follows:

	0

	Write one track for each Part, with channels assigned by
voices

	1

	Write one track for each PartGroup, with channels assigned by
Parts (voice info is lost) (There can be multiple levels of
partgroups, I suggest using the highest level of
partgroup/part) [note: this will e.g. lead to all strings into
the same track] Each part not in a PartGroup will be assigned
its own track

	2

	Write a single track with channels assigned by Part (voice
info is lost)

	3

	Write one track per Part, and a single channel for all voices
(voice info is lost)

	4

	Write a single track with a single channel (Part and voice
info is lost)

	5

	Return one track per <Part, voice> combination, each track
having a single channel.

The default mode is 0.

	velocity (int, optional) – Default velocity for all MIDI notes. Defaults to 64.

	anacrusis_behavior ({"shift", "pad_bar"}, optional) – Strategy to deal with anacrusis. If “shift”, all
time points are shifted by the anacrusis (i.e., the first
note starts at 0). If “pad_bar”, the “incomplete” bar of
the anacrusis is padded with silence. Defaults to ‘shift’.

	
partitura.load_via_musescore(fn, ensure_list=False, validate=False, force_note_ids=True)

	Load a score through through the MuseScore program.

This function attempts to load the file in MuseScore, export it as
MusicXML, and then load the MusicXML. This should enable loading
of all file formats that for which MuseScore has import-support
(e.g. MIDI, and ABC, but currently not MEI).

	Parameters

	
	fn (str) – Filename of the score to load

	ensure_list (bool, optional) – When True return a list independent of how many part or
partgroup elements were created from the MIDI file. By
default, when the return value of load_musicxml produces a

	single (class:partitura.score.Part or) – partitura.score.PartGroup element, the element itself
is returned instead of a list containing the element. Defaults
to False.

	validate (bool, optional) – When True the validity of the MusicXML generated by MuseScore is checked
against the MusicXML 3.1 specification before loading the file. An
exception will be raised when the MusicXML is invalid.
Defaults to False.

	force_note_ids (bool, optional.) – When True each Note in the returned Part(s) will have a newly
assigned unique id attribute. Existing note id attributes in
the MusicXML will be discarded.

	Returns

	One or more part or partgroup objects

	Return type

	partitura.score.Part, partitura.score.PartGroup, or a list of these

	
partitura.load_performance_midi(fn, default_bpm=120, merge_tracks=False)

	Load a musical performance from a MIDI file.

This function should be used for MIDI files that encode
performances, such as those obtained from a capture of a MIDI
instrument. This function loads note on/off events as well as
control events, but ignores other data such as time and key
signatures. Furthermore, the PerformedPart instance that the
function returns does not retain the ticks_per_beat or tempo
events. The timing of all events is represented in seconds. If you
wish to retain this information consider using the
load_score_midi function.

	Parameters

	
	fn (str) – Path to MIDI file

	default_bpm (number, optional) – Tempo to use wherever the MIDI does not specify a tempo.
Defaults to 120.

	Returns

	A PerformedPart instance.

	Return type

	partitura.performance.PerformedPart

	
partitura.save_performance_midi(performed_part, out, mpq=500000, ppq=480, default_velocity=64)

	Save a PerformedPart instance as a
MIDI file.

	Parameters

	
	performed_part (PerformedPart) – The performed part to save

	out (str or file-like object) – Either a filename or a file-like object to write the MIDI data
to.

	mpq (int, optional) – Microseconds per quarter note. This is known in MIDI parlance
as the “tempo” value. Defaults to 500000 (i.e. 120 BPM).

	ppq (int, optional) – Parts per quarter, also known as ticks per beat. Defaults to
480.

	default_velocity (int, optional) – A default velocity value (between 0 and 127) to be used for
notes without a specified velocity. Defaults to 64.

	
partitura.load_match(fn, create_part=False, pedal_threshold=64, first_note_at_zero=False, offset_duration_whole=True)

	Load a matchfile.

	Parameters

	
	fn (str) – The matchfile

	create_part (bool, optional) – When True create a Part object from the snote information in
the match file. Defaults to False.

	pedal_threshold (int, optional) – Threshold for adjusting sound off of the performed notes using
pedal information. Defaults to 64.

	first_note_at_zero (bool, optional) – When True the note_on and note_off times in the performance
are shifted to make the first note_on time equal zero.

	Returns

	
	ppart (list) – The performed part, a list of dictionaries

	alignment (list) – The score–performance alignment, a list of dictionaries

	spart (Part) – The score part. This item is only returned when create_part = True.

	
partitura.save_match(alignment, ppart, spart, out, mpq=500000, ppq=480, performer=None, composer=None, piece=None)

	Save an Alignment of a PerformedPart to a Part in a match file.

	Parameters

	
	alignment (list) – A list of dictionaries containing alignment information.
See partitura.io.importmatch.alignment_from_matchfile.

	ppart (partitura.performance.PerformedPart) – An instance of PerformedPart containing performance information.

	spart (partitura.score.Part) – An instance of Part containing score information.

	out (str) – Out to export the matchfile.

	mpq (int) – Milliseconds per quarter note.

	ppq (int) – Parts per quarter note.

	performer (str or None) – Name(s) of the performer(s) of the PerformedPart.

	composer (str or None) – Name(s) of the composer(s) of the piece represented by Part.

	piece (str or None:) – Name of the piece represented by Part.

	
partitura.load_nakamuramatch(fn)

	Load a match file as returned by Nakamura et al.’s MIDI to musicxml alignment

Fields of the file format as specified in 8:
ID (onset time) (offset time) (spelled pitch) (onset velocity)(offset velocity)
channel (match status) (score time) (note ID)(error index) (skip index)

	Parameters

	fn (str) – The nakamura match.txt-file

	Returns

	
	align (structured array) – structured array of performed notes

	ref (structured array) – structured array of score notes

	alignment (list) – The score–performance alignment, a list of dictionaries

References

	8(1,2)

	https://midialignment.github.io/MANUAL.pdf

	
partitura.load_nakamuracorresp(fn)

	Load a corresp file as returned by Nakamura et al.’s MIDI to MIDI alignment.

Fields of the file format as specified in 8:
(ID) (onset time) (spelled pitch) (integer pitch) (onset velocity)

	Parameters

	fn (str) – The nakamura match.txt-file

	Returns

	
	align (structured array) – structured array of performed notes

	ref (structured array) – structured array of score notes

	alignment (list) – The score–performance alignment, a list of dictionaries

	
partitura.render(part, fmt='png', dpi=90, out_fn=None)

	Create a rendering of one or more parts or partgroups.

The function can save the rendered image to a file (when
out_fn is specified), or shown in the default image viewer
application.

Rendering is first attempted through musecore, and if that
fails through lilypond. If that also fails the function returns
without raising an exception.

	Parameters

	
	part (partitura.score.Part or partitura.score.PartGroup) – or a list of these
The score content to be displayed

	fmt ({'png', 'pdf'}, optional) – The image format of the rendered material

	out_fn (str or None, optional) – The path of the image output file. If None, the rendering will
be displayed in a viewer.

partitura.score

This module defines an ontology of musical elements to represent
musical scores, such as measures, notes, slurs, words, tempo and
loudness directions. A score is defined at the highest level by a
Part object (or a hierarchy of Part objects, in a PartGroup
object). This object serves as a timeline at which musical elements
are registered in terms of their start and end times.

	
class partitura.score.Part(id, part_name=None, part_abbreviation=None, quarter_duration=1)

	Bases: object

Represents a score part, e.g. all notes of one single instrument
(or multiple instruments written in the same staff). Note that
there may be more than one staff per score part.

	Parameters

	
	id (str) – The identifier of the part. In order to be compatible with
MusicXML the identifier should not start with a number.

	part_name (str or None, optional) – Name for the part. Defaults to None

	part_abbreviation (str or None, optional) – Abbreviated name for part

	quarter_duration (int, optional) – The default quarter duration. See
set_quarter_duration() for
details.

	
id

	See parameters

	Type

	str

	
part_name

	See parameters

	Type

	str

	
part_abbreviation

	See parameters

	Type

	str

	
pretty()

	Return a pretty representation of this object.

	Returns

	A pretty representation

	Return type

	str

	
time_signature_map

	A function mapping timeline times to the beats and beat_type
of the time signature at that time. The function can take
scalar values or lists/arrays of values.

	Returns

	The mapping function

	Return type

	function

	
key_signature_map

	A function mappting timeline times to the key and mode of
the key signature at that time. The function can take scalar
values or lists/arrays of values

	Returns

	The mapping function

	Return type

	function

	
beat_map

	A function mapping timeline times to beat times. The function
can take scalar values or lists/arrays of values.

	Returns

	The mapping function

	Return type

	function

	
inv_beat_map

	A function mapping beat times to timeline times. The function
can take scalar values or lists/arrays of values.

	Returns

	The mapping function

	Return type

	function

	
quarter_map

	A function mapping timeline times to quarter times. The
function can take scalar values or lists/arrays of values.

	Returns

	The mapping function

	Return type

	function

	
inv_quarter_map

	A function mapping quarter times to timeline times. The
function can take scalar values or lists/arrays of values.

	Returns

	The mapping function

	Return type

	function

	
notes

	Return a list of all Note objects in the part. This list includes
GraceNote objects but not Rest objects.

	Returns

	list of Note objects

	Return type

	list

	
notes_tied

	Return a list of all Note objects in the part that are
either not tied, or the first note of a group of tied notes.
This list includes GraceNote objects but not Rest objects.

	Returns

	List of Note objects

	Return type

	list

	
quarter_durations(start=None, end=None)

	Return an Nx2 array with quarter duration (second column)
and their respective times (first column).

When a start and or end time is specified, the returned
array will contain only the entries within those bounds.

	Parameters

	
	start (number, optional) – Start of range

	end (number, optional) – End of range

	Returns

	An array with quarter durations and times

	Return type

	ndarray

	
quarter_duration_map

	A function mapping timeline times to quarter durations in
effect at those times. The function can take scalar values or
lists/arrays of values.

	Returns

	The mapping function

	Return type

	function

	
set_quarter_duration(t, quarter)

	Set the duration of a quarter note from timepoint t
onwards.

Setting the quarter note duration defines how intervals
between timepoints are related to musical durations. For
example when two timepoints t1 and t2 have associated
times 10 and 20 respecively, then the interval between t1
and t2 corresponds to a half note when the quarter duration
equals 5 during that interval.

The quarter duration can vary throughout the part. When
setting a quarter duration at time t, then that value takes
effect until the time of the next quarter duration. If a
different quarter duration was already set at time t, it wil
be replaced.

Note setting the quarter duration does not change the
timepoints, only the relation to musical time. For
illustration: in the example above, when changing the current
quarter duration from 5 to 10, a note that starts at t1 and
ends at t2 will change from being a half note to being a
quarter note.

	Parameters

	
	t (int) – Time at which to set the quarter duration

	quarter (int) – The quarter duration

	
get_point(t)

	Return the TimePoint object with time t, or None if
there is no such object.

	
get_or_add_point(t)

	Return the TimePoint object with time t; if there is no
such object, create it, add it to the time line, and return
it.

	Parameters

	t (int) – Time value t

	Returns

	a TimePoint object with time t

	Return type

	TimePoint

	
add(o, start=None, end=None)

	Add an object to the timeline.

An object can be added by start time, end time, or both,
depending on which of the start and end keywords are
provided. If neither is provided this method does nothing.

start and end should be non-negative integers.

	Parameters

	
	o (TimedObject) – Object to be removed

	start (int, optional) – The start time of the object

	end (int, optional) – The end time of the object

	
remove(o, which='both')

	Remove an object from the timeline.

An object can be removed by start time, end time, or both.

	Parameters

	
	o (TimedObject) – Object to be removed

	which ({'start', 'end', 'both'}, optional) – Whether to remove o as a starting object, an ending
object, or both. Defaults to ‘both’.

	
iter_all(cls=None, start=None, end=None, include_subclasses=False, mode='starting')

	Iterate (in direction of increasing time) over all
instances of cls that either start or end (depending on
mode) in the interval start to end. When start and
end are omitted, the whole timeline is searched.

	Parameters

	
	cls (class, optional) – The class of objects to iterate over. If omitted, iterate
over all objects in the part.

	start (TimePoint, optional) – The start of the interval to search. If omitted or None,
the search starts at the start of the timeline. Defaults
to None.

	end (TimePoint, optional) – The end of the interval to search. If omitted or None, the
search ends at the end of the timeline. Defaults to None.

	include_subclasses (bool, optional) – If True also return instances that are subclasses of
cls. Defaults to False.

	mode ({'starting', 'ending'}, optional) – Flag indicating whether to search for starting or ending
objects. Defaults to ‘starting’.

	Yields

	object – Instances of the specified type.

	
last_point

	The last TimePoint on the timeline, or None if the timeline
is empty.

	Returns

	

	Return type

	TimePoint

	
first_point

	The first TimePoint on the timeline, or None if the
timeline is empty.

	Returns

	

	Return type

	TimePoint

	
class partitura.score.TimePoint(t, quarter=None)

	Bases: partitura.utils.generic.ComparableMixin

A TimePoint represents a temporal position within a
Part.

TimePoints are used to keep track of the starting and ending of
musical elements in the part. They are created automatically when
adding musical elements to a part using its add()
method, so there should be normally no reason to instantiate
TimePoints manually.

	Parameters

	
	t (int) – The time associated to this TimePoint. Should be a non-
negative integer.

	quarter (int) – The duration of a quarter note at this TimePoint

	
t

	See parameters

	Type

	int

	
quarter

	See parameters

	Type

	int

	
starting_objects

	A dictionary where the musical objects starting at this time
are grouped by class.

	Type

	dictionary

	
ending_objects

	A dictionary where the musical objects ending at this time are
grouped by class.

	Type

	dictionary

	
prev

	The preceding TimePoint (or None if there is none)

	Type

	TimePoint

	
next

	The succeding TimePoint (or None if there is none)

	Type

	TimePoint

	
add_starting_object(obj)

	Add object obj to the list of starting objects.

	
remove_starting_object(obj)

	Remove object obj from the list of starting objects.

	
remove_ending_object(obj)

	Remove object obj from the list of ending objects.

	
add_ending_object(obj)

	Add object obj to the list of ending objects.

	
iter_starting(cls, include_subclasses=False)

	Iterate over all objects of type cls that start at this
time point.

	Parameters

	
	cls (class) – The type of objects to iterate over

	include_subclasses (bool, optional) – When True, include all objects of all subclasses of cls
in the iteration. Defaults to False.

	Yields

	cls – Instance of type cls

	
iter_ending(cls, include_subclasses=False)

	Iterate over all objects of type cls that end at this
time point.

	Parameters

	
	cls (class) – The type of objects to iterate over

	include_subclasses (bool, optional) – When True, include all objects of all subclasses of cls
in the iteration. Defaults to False.

	Yields

	cls – Instance of type cls

	
iter_prev(cls, eq=False, include_subclasses=False)

	Iterate backwards in time from the current timepoint over
starting object(s) of type cls.

	Parameters

	
	cls (class) – Class of objects to iterate over

	eq (bool, optional) – If True start iterating at the current timepoint, rather
than its predecessor. Defaults to False.

	include_subclasses (bool, optional) – If True include subclasses of cls in the iteration.
Defaults to False.

	Yields

	cls – Instances of cls

	
iter_next(cls, eq=False, include_subclasses=False)

	Iterate forwards in time from the current timepoint over
starting object(s) of type cls.

	Parameters

	
	cls (class) – Class of objects to iterate over

	eq (bool, optional) – If True start iterating at the current timepoint, rather
than its successor. Defaults to False.

	include_subclasses (bool, optional) – If True include subclasses of cls in the iteration.
Defaults to False.

	Yields

	cls – Instances of cls

	
class partitura.score.TimedObject

	Bases: partitura.utils.generic.ReplaceRefMixin

This is the base class of all classes that have a start and end
point. The start and end attributes initialized to None, and are
set/unset when the object is added to/removed from a Part, using
its add() and remove() methods,
respectively.

	
start

	Start time of the object

	Type

	TimePoint

	
end

	End time of the object

	Type

	TimePoint

	
duration

	The duration of the timed object in divisions. When either
the start or the end property of the object are None, the
duration is None.

	Returns

	

	Return type

	int or None

	
class partitura.score.GenericNote(id=None, voice=None, staff=None, symbolic_duration=None, articulations=None, doc_order=None)

	Bases: partitura.score.TimedObject

Represents the common aspects of notes, rests, and unpitched
notes.

	Parameters

	
	id (str, optional (default: None)) – A string identifying the note. To be compatible with the
MusicXML format, the id must be unique within a part and must
not start with a number.

	voice (int, optional) – An integer representing the voice to which the note belongs.
Defaults to None.

	staff (str, optional) – An integer representing the staff to which the note belongs.
Defaults to None.

	doc_order (int, optional) – The document order index (zero-based), expressing the order of
appearance of this note (with respect to other notes) in the
document in case the Note belongs to a part that was imported
from MusicXML. Defaults to None.

	
symbolic_duration

	The symbolic duration of the note.

This property returns a dictionary specifying the symbolic
duration of the note. The dictionary may have the following
keys:

	type : the note type as a string, e.g. ‘quarter’, ‘half’

	dots : an integer specifying the number of dots. When
this key is missing it means there are no dots.

	actual_notes : Specifies the number of actual notes in a
rhythmical tuplet. Used in conjunction with normal_notes.

	normal_notes : Specifies the normal number of notes in a
rhythmical tuplet. For example a triplet of eights in the
time of two eights would correspond to actual_notes=3,
normal_notes=2.

The symbolic duration dictionary of a note can either be
set manually (for example by specifying the
symbolic_duration constructor keyword argument), or left
unspecified (i.e. None). In the latter case the symbolic
duration is estimated dynamically based on the note start and
end times. Note that this latter case is generally preferrable
because it ensures that the symbolic duration is consistent
with the numeric duration.

If the symbolic duration cannot be estimated from the
numeric duration None is returned.

	Returns

	A dictionary specifying the symbolic duration of the note, or
None if the symbolic duration could not be estimated from the
numeric duration.

	Return type

	dict or None

	
end_tied

	The Timepoint corresponding to the end of the note, or—
when this note belongs to a group of tied notes—the end of
the last note in the group.

	Returns

	End of note

	Return type

	TimePoint

	
duration_tied

	Time difference of the start of the note to the end of the
note, or—when this note belongs to a group of tied notes—
the end of the last note in the group.

	Returns

	Duration of note

	Return type

	int

	
duration_from_symbolic

	Return the numeric duration given the symbolic duration of
the note and the quarter_duration in effect.

	Returns

	

	Return type

	int or None

	
tie_prev_notes

	TODO

	Returns

	Description of return value

	Return type

	type

	
tie_next_notes

	TODO

	Returns

	Description of return value

	Return type

	type

	
iter_chord(same_duration=True, same_voice=True)

	Iterate over notes with coinciding start times.

	Parameters

	
	same_duration (bool, optional) – When True limit the iteration to notes that have the same
duration as the current note. Defaults to True.

	same_voice (bool, optional) – When True limit the iteration to notes that have the same
voice as the current note. Defaults to True.

	Yields

	GenericNote

	
class partitura.score.Note(step, octave, alter=None, beam=None, **kwargs)

	Bases: partitura.score.GenericNote

Subclass of GenericNote representing pitched notes.

	Parameters

	
	step ({'C', 'D', 'E', 'F', 'G', 'A', 'B'}) – The note name of the pitch (in upper case). If a lower case
note name is given, it will be converted to upper case.

	octave (int) – An integer representing the octave of the pitch

	alter (int, optional) – An integer (or None) representing the alteration of the pitch as
follows:

	-2

	double flat

	-1

	flat

	0 or None

	unaltered

	1

	sharp

	2

	double sharp

Defaults to None.

	
midi_pitch

	The midi pitch value of the note (MIDI note number). C4
(middle C, in german: c’) is note number 60.

	Returns

	The note’s pitch as MIDI note number.

	Return type

	integer

	
alter_sign

	The alteration of the note

	Returns

	

	Return type

	str

	
class partitura.score.Rest(*args, **kwargs)

	Bases: partitura.score.GenericNote

A subclass of GenericNote representing a rest.

	
class partitura.score.Beam(id=None)

	Bases: partitura.score.TimedObject

Represent beams (for MEI)

	
class partitura.score.GraceNote(grace_type, *args, steal_proportion=None, **kwargs)

	Bases: partitura.score.Note

A subclass of Note representing a grace note.

	Parameters

	
	grace_type ({'grace', 'acciaccatura', 'appoggiatura'}) – The type of grace note. Use ‘grace’ for a unspecified grace
note type.

	steal_proportion (float, optional) – The proportion of the previous (acciaccatura) or next
(appoggiatura) note duration that is occupied by the grace
note. Defaults to None.

	
main_note

	The (non-grace) note to which this grace note belongs.

	Type

	Note

	
grace_seq_len

	The length of the sequence of grace notes to which this grace
note belongs.

	Type

	list

	
iter_grace_seq(backwards=False)

	Iterate over this and all subsequent/preceding grace notes,
excluding the main note.

	Parameters

	backwards (bool, optional) – When True, iterate over preceding grace notes. Otherwise
iterate over subsequent grace notes. Defaults to False.

	Yields

	GraceNote

	
class partitura.score.Page(number=0)

	Bases: partitura.score.TimedObject

A page in a musical score. Its start and end times describe the
range of musical time that is spanned by the page.

	Parameters

	number (int, optional) – The number of the system. Defaults to 0.

	
number

	See parameters

	Type

	int

	
class partitura.score.System(number=0)

	Bases: partitura.score.TimedObject

A system in a musical score. Its start and end times describe
the range of musical time that is spanned by the system.

	Parameters

	number (int, optional) – The number of the system. Defaults to 0.

	
number

	See parameters

	Type

	int

	
class partitura.score.Clef(number, sign, line, octave_change)

	Bases: partitura.score.TimedObject

Clefs associate the lines of a staff to musical pitches.

	Parameters

	
	number (int, optional) – The number of the staff to which this clef belongs.

	sign ({'G', 'F', 'C', 'percussion', 'TAB', 'jianpu', 'none'}) – The sign of the clef

	line (int) – The staff line at which the sign is positioned

	octave_change (int) – The number of octaves to shift the pitches up (postive) or
down (negative)

	
nr

	See parameters

	Type

	int

	
sign

	See parameters

	Type

	{‘G’, ‘F’, ‘C’, ‘percussion’, ‘TAB’, ‘jianpu’, ‘none’}

	
line

	See parameters

	Type

	int

	
octave_change

	See parameters

	Type

	int

	
class partitura.score.Slur(start_note=None, end_note=None)

	Bases: partitura.score.TimedObject

Slurs indicate musical grouping across notes.

	Parameters

	
	start_note (Note, optional) – The note at which this slur starts. Defaults to None.

	end_note (Note, optional) – The note at which this slur ends. Defaults to None.

	
start_note

	See parameters

	Type

	Note or None

	
end_note

	See parameters

	Type

	Note or None

	
class partitura.score.Tuplet(start_note=None, end_note=None)

	Bases: partitura.score.TimedObject

Tuplets indicate musical grouping across notes.

	Parameters

	
	start_note (Note, optional) – The note at which this tuplet starts. Defaults to None.

	end_note (Note, optional) – The note at which this tuplet ends. Defaults to None.

	
start_note

	See parameters

	Type

	Note or None

	
end_note

	See parameters

	Type

	Note or None

	
class partitura.score.Repeat

	Bases: partitura.score.TimedObject

Repeats represent a repeated section in the score, designated
by its start and end times.

	
class partitura.score.DaCapo

	Bases: partitura.score.TimedObject

A Da Capo sign.

	
class partitura.score.Fine

	Bases: partitura.score.TimedObject

A Fine sign.

	
class partitura.score.Fermata(ref=None)

	Bases: partitura.score.TimedObject

A Fermata sign.

	Parameters

	ref (TimedObject or None, optional) – An object to which this fermata applies. In practice this is a
Note or a Barline. Defaults to None.

	
ref

	See parameters

	Type

	TimedObject or None

	
class partitura.score.Ending(number)

	Bases: partitura.score.TimedObject

Class that represents one part of a 1—2— type ending of a
musical passage (a.k.a Volta brackets).

	Parameters

	number (int) – The number associated to this ending

	
number

	See parameters

	Type

	int

	
class partitura.score.Barline(style)

	Bases: partitura.score.TimedObject

Class that represents the style of a barline

	
class partitura.score.Measure(number=None)

	Bases: partitura.score.TimedObject

A measure

	Parameters

	number (int or None, optional) – The number of the measure. Defaults to None

	
number

	See parameters

	Type

	int

	
page

	The page number on which this measure appears, or None if
there is no associated page.

	Returns

	

	Return type

	int or None

	
system

	The system number in which this measure appears, or None if
there is no associated system.

	Returns

	

	Return type

	int or None

	
class partitura.score.TimeSignature(beats, beat_type)

	Bases: partitura.score.TimedObject

A time signature.

	Parameters

	
	beats (int) – The number of beats in a measure

	beat_type (int) – The note type that defines the beat unit. (4 for quarter
notes, 2 for half notes, etc.)

	
beats

	See parameters

	Type

	int

	
beat_type

	See parameters

	Type

	int

	
class partitura.score.Tempo(bpm, unit=None)

	Bases: partitura.score.TimedObject

A tempo indication.

	Parameters

	
	bpm (number) – The tempo indicated in rate per minute

	unit (str or None, optional) – The unit to which the specified rate correspnds. This is a
string that expreses a duration category, such as “q” for
quarter “h.” for dotted half, and so on. When None, the unit
is assumed to be quarters. Defaults to None.

	
bpm

	See parameters

	Type

	number

	
unit

	See parameters

	Type

	str or None

	
microseconds_per_quarter

	The number of microseconds per quarter under this tempo.

This is useful for MIDI representations.

	Returns

	

	Return type

	int

	
class partitura.score.KeySignature(fifths, mode)

	Bases: partitura.score.TimedObject

Key signature.

	Parameters

	
	fifths (number) – Number of sharps (positive) or flats (negative)

	mode (str) – Mode of the key, either ‘major’ or ‘minor’

	
fifths

	See parameters

	Type

	number

	
mode

	See parameters

	Type

	str

	
name

	The key signature name, where the root is uppercase, and an
trailing ‘m’ indicates minor modes (e.g. ‘Am’, ‘G#’).

	Returns

	The key signature name

	Return type

	str

	
class partitura.score.Transposition(diatonic, chromatic)

	Bases: partitura.score.TimedObject

Represents a <transpose> tag that tells how to change all
(following) pitches of that part to put it to concert pitch (i.e.
sounding pitch).

	Parameters

	
	diatonic (int) – TODO

	chromatic (int) – The number of semi-tone steps to add or subtract to the pitch
to get to the (sounding) concert pitch.

	
diatonic

	See parameters

	Type

	int

	
chromatic

	See parameters

	Type

	int

	
class partitura.score.Words(text, staff=None)

	Bases: partitura.score.TimedObject

A textual element in the score.

	Parameters

	
	text (str) – The text

	staff (int or None, optional) – The staff to which the text is associated. Defaults to None

	
text

	See parameters

	Type

	str

	
staff

	See parameters

	Type

	int or None, optional

	
class partitura.score.Direction(text=None, raw_text=None, staff=None)

	Bases: partitura.score.TimedObject

Base class for performance directions in the score.

	
class partitura.score.LoudnessDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.Direction

	
class partitura.score.TempoDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.Direction

	
class partitura.score.ArticulationDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.Direction

	
class partitura.score.PedalDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.Direction

	
class partitura.score.ConstantDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.Direction

	
class partitura.score.DynamicDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.Direction

	
class partitura.score.ImpulsiveDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.Direction

	
class partitura.score.ConstantLoudnessDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.ConstantDirection, partitura.score.LoudnessDirection

	
class partitura.score.ConstantTempoDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.ConstantDirection, partitura.score.TempoDirection

	
class partitura.score.ConstantArticulationDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.ConstantDirection, partitura.score.ArticulationDirection

	
class partitura.score.DynamicLoudnessDirection(*args, wedge=False, **kwargs)

	Bases: partitura.score.DynamicDirection, partitura.score.LoudnessDirection

	
class partitura.score.DynamicTempoDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.DynamicDirection, partitura.score.TempoDirection

	
class partitura.score.IncreasingLoudnessDirection(*args, wedge=False, **kwargs)

	Bases: partitura.score.DynamicLoudnessDirection

	
class partitura.score.DecreasingLoudnessDirection(*args, wedge=False, **kwargs)

	Bases: partitura.score.DynamicLoudnessDirection

	
class partitura.score.IncreasingTempoDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.DynamicTempoDirection

	
class partitura.score.DecreasingTempoDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.DynamicTempoDirection

	
class partitura.score.ImpulsiveLoudnessDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.ImpulsiveDirection, partitura.score.LoudnessDirection

	
class partitura.score.SustainPedalDirection(line=False, *args, **kwargs)

	Bases: partitura.score.PedalDirection

Represents a Sustain Pedal Direction

	
class partitura.score.ResetTempoDirection(text=None, raw_text=None, staff=None)

	Bases: partitura.score.ConstantTempoDirection

	
class partitura.score.PartGroup(group_symbol=None, group_name=None, number=None)

	Bases: object

Represents a grouping of several instruments, usually named,
and expressed in the score with a group symbol such as a brace or
a bracket. In symphonic scores, bracketed part groups usually
group families of instruments, such as woodwinds or brass, whereas
braces are often used to group multiple instances of the same
instrument. See the MusicXML documentation [https://usermanuals.musicxml.com/MusicXML/Content/ST-MusicXML-group-symbol-value.htm] for further information.

	Parameters

	group_symbol (str or None, optional) – The symbol used for grouping instruments.

	
group_symbol

	
	Type

	str or None

	
name

	
	Type

	str or None

	
number

	
	Type

	int

	
parent

	
	Type

	PartGroup or None

	
children

	
	Type

	list of Part or PartGroup objects

	
pretty()

	Return a pretty representation of this object.

	Returns

	A pretty representation

	Return type

	str

	
note_array

	A structured array containing pitch, onset, duration, voice
and id for each note in each part of the PartGroup. The note
ids in this array include the number of the part to which they
belong.

	
partitura.score.iter_unfolded_parts(part)

	Iterate over unfolded clones of part.

For each repeat construct in part the iterator produces two
clones, one with the repeat included and another without the
repeat. That means the number of items returned is two to the
power of the number of repeat constructs in the part.

The first item returned by the iterator is the version of the part
without any repeated sections, the last item is the version of the
part with all repeat constructs expanded.

	Parameters

	part (Part) – Part to unfold

	
partitura.score.unfold_part_maximal(part, update_ids=False)

	Return the “maximally” unfolded part, that is, a copy of the
part where all segments marked with repeat signs are included
twice.

	Parameters

	
	part (Part) – The Part to unfold.

	update_ids (bool (optional)) – Update note ids to reflect the repetitions. Note IDs will have
a ‘-<repetition number>’, e.g., ‘n132-1’ and ‘n132-2’
represent the first and second repetition of ‘n132’ in the
input part. Defaults to False.

	Returns

	unfolded_part – The unfolded Part

	Return type

	Part

	
partitura.score.unfold_part_alignment(part, alignment)

	Return the unfolded part given an alignment, that is, a copy
of the part where the segments are repeated according to the
repetitions in a performance.

	Parameters

	
	part (Part) – The Part to unfold.

	alignment (list of dictionaries) – List of dictionaries containing an alignment (like the ones
obtained from a MatchFile (see alignment_from_matchfile).

	Returns

	unfolded_part – The unfolded Part

	Return type

	Part

	
partitura.score.make_score_variants(part)

	Create a list of ScoreVariant objects, each representing a
distinct way to unfold the score, based on the repeat structure.

	Parameters

	part (Part) – A part for which to make the score variants

	Returns

	List of ScoreVariant objects

	Return type

	list

Notes

This function does not currently support nested repeats, such as in
case 45d of the MusicXML Test Suite.

	
partitura.score.add_measures(part)

	Add measures to a part.

This function adds Measure objects to the part according to any
time signatures present in the part. Any existing measures will be
untouched, and added measures will be delimited by the existing
measures.

The Part object will be modified in place.

	Parameters

	part (Part) – Part instance

	
partitura.score.remove_grace_notes(part)

	Remove all grace notes from a timeline.

The specified timeline object will be modified in place.

	Parameters

	timeline (Timeline) – The timeline from which to remove the grace notes

	
partitura.score.expand_grace_notes(part)

	Expand grace note durations in a part.

The specified part object will be modified in place.

	Parameters

	part (Part) – The part on which to expand the grace notes

	
partitura.score.iter_parts(partlist)

	Iterate over all Part instances in partlist, which is a list of
either Part or PartGroup instances. PartGroup instances contain
one or more parts or further partgroups, and are traversed in a
depth-first fashion.

This function is designed to take the result of
partitura.load_score_midi() and partitura.load_musicxml() as
input.

	Parameters

	partlist (list, Part, or PartGroup) – A partitura.score.Part object,
partitura.score.PartGroup or a list of these

	Yields

	Part instances in partlist

	
partitura.score.repeats_to_start_end(repeats, first, last)

	Return pairs of (start, end) TimePoints corresponding to the start and
end times of each Repeat object. If any of the start or end attributes
are None, replace it with the end/start of the preceding/succeeding
Repeat, respectively, or first or last.

	Parameters

	
	repeats (list) – list of Repeat instances, possibly with None-valued start/end
attributes

	first (TimePoint) – The first TimePoint in the timeline

	last (TimePoint) – The last TimePoint in the timeline

	Returns

	list of (start, end) TimePoints corresponding to each Repeat in
repeats

	Return type

	list

	
partitura.score.tie_notes(part)

	Find notes that span measure boundaries and notes with composite
durations, and split them adding ties.

	Parameters

	part (Part) – Description of part

	
partitura.score.set_end_times(parts)

	Set missing end times of musical elements in a part to equal
the start times of the subsequent element of the same class. This
is useful for some classes

This function modifies the parts in place.

	Parameters

	part (Part or PartGroup, or list of these) – Parts to be processed

	
partitura.score.find_tuplets(part)

	Identify tuplets in part and set their symbolic durations
explicitly.

This function adds actual_notes and normal_notes keys to
the symbolic duration of tuplet notes.

This function modifies the part in place.

	Parameters

	part (Part) – Part instance

	
partitura.score.sanitize_part(part)

	Find and remove incomplete structures in a part such as Tuplets
and Slurs without start or end and grace notes without a main
note.

This function modifies the part in place.

	Parameters

	part (Part) – Part instance

	
exception partitura.score.InvalidTimePointException(message=None)

	Bases: Exception

Raised when a time point is instantiated with an invalid number.

partitura.performance

This module contains a lightweight ontology to represent a performance in a
MIDI-like format. A performance is defined at the highest level by a
PerformedPart. This object contains performed
notes as well as continuous control parameters, such as sustain pedal.

	
class partitura.performance.PerformedPart(notes, id=None, part_name=None, controls=None, programs=None, sustain_pedal_threshold=64)

	Bases: object

Represents a performed part, e.g. all notes and related
controller/modifiers of one single instrument.

Performed notes are stored as a list of dictionaries, where each
dictionary represents a performed note, should have at least the
keys “note_on”, “note_off”, the onset and offset times of the note
in seconds, respectively.

Continuous controls are also stored as a list of dictionaries,
where each dictionary represents a control change. Each dictionary
should have a key “type” (the name of the control, e.g.
“sustain_pedal”, “soft_pedal”), “time” (in seconds), and “value”
(a number).

	Parameters

	
	notes (list) – A list of dictionaries containing performed note information.

	id (str) – The identifier of the part

	controls (list) – A list of dictionaries containing continuous control information

	part_name (str) – Name for the part

	sustain_pedal_threshold (int) – The threshold above which sustain pedal values are considered
to be equivalent to on. For values below the threshold the
sustain pedal is treated as off. Defaults to 64.

	
notes

	A list of dictionaries containing performed note information.

	Type

	list

	
id

	The identifier of the part

	Type

	str

	
part_name

	Name for the part

	Type

	str

	
controls

	A list of dictionaries containing continuous control
information

	Type

	list

	
programs

	List of dictionaries containing program change information

	Type

	list

	
classmethod from_note_array(note_array, id=None, part_name=None)

	Create an instance of PerformedPart from a note_array.
Note that this property does not include non-note information (i.e.
controls such as sustain pedal).

	
note_array

	Structured array containing performance information.
The fields are ‘id’, ‘pitch’, ‘onset_div’, ‘duration_div’,
‘onset_sec’, ‘duration_sec’ and ‘velocity’.

	
sustain_pedal_threshold

	The threshold value (number) above which sustain pedal values
are considered to be equivalent to on. For values below the
threshold the sustain pedal is treated as off. Defaults to 64.

Based on the control items of type “sustain_pedal”, in
combination with the value of the “sustain_pedal_threshold”
attribute, the note dictionaries will be extended with a key
“sound_off”. This key represents the time the note will stop
sounding. When the sustain pedal is off, sound_off will
coincide with note_off. When the sustain pedal is on,
sound_off will equal the earliest time the sustain pedal is
off after note_off. The sound_off values of notes will be
automatically recomputed each time the
sustain_pedal_threshold is set.

partitura.musicanalysis

Tools for music analysis.

	
partitura.musicanalysis.estimate_voices(note_info, monophonic_voices=False)

	
	Voice estimation using the voice separation algorithm

	proposed in 6.

	Parameters

	
	note_info (structured array, Part or PerformedPart) – Note information as a Part or PerformedPart instances or
as a structured array. If it is a structured array, it has to
contain the fields generated by the note_array properties
of Part or PerformedPart objects. If the array contains
onset and duration information of both score and performance,
(e.g., containing both onset_beat and onset_sec), the score
information will be preferred.

	monophonic_voices (bool) – If True voices are guaranteed to be monophonic. Otherwise
notes with the same onset and duration are treated as a chord
and assigned to the same voice. Defaults to False.

	Returns

	voice – Voice for each note in the notearray. (The voices start with 1, as
is the MusicXML convention).

	Return type

	numpy array

References

	6

	Chew, E. and Wu, Xiaodan (2004) “Separating Voices in
Polyphonic Music: A Contig Mapping Approach”. In Uffe Kock,
editor, “Computer Music Modeling and Retrieval”. Springer
Berlin Heidelberg.

	
partitura.musicanalysis.estimate_key(note_info, method='krumhansl', *args, **kwargs)

	Estimate key of a piece by comparing the pitch statistics of the
note array to key profiles 2, 3.

	Parameters

	
	note_info (structured array, Part or PerformedPart) – Note information as a Part or PerformedPart instances or
as a structured array. If it is a structured array, it has to
contain the fields generated by the note_array properties
of Part or PerformedPart objects. If the array contains
onset and duration information of both score and performance,
(e.g., containing both onset_beat and onset_sec), the score
information will be preferred.

	method ({'krumhansl'}) – Method for estimating the key. For now ‘krumhansl’ is the only
supported method.

	kwargs (args,) – Positional and Keyword arguments for the key estimation method

	Returns

	String representing the key name (i.e., Root(alteration)(m if minor)).
See partitura.utils.key_name_to_fifths_mode and
partitura.utils.fifths_mode_to_key_name.

	Return type

	str

References

	2

	Krumhansl, Carol L. (1990) “Cognitive foundations of musical pitch”,
Oxford University Press, New York.

	3

	Temperley, D. (1999) “What’s key for key? The Krumhansl-Schmuckler
key-finding algorithm reconsidered”. Music Perception. 17(1),
pp. 65–100.

	
partitura.musicanalysis.estimate_spelling(note_info, method='ps13s1', **kwargs)

	Estimate pitch spelling using the ps13 algorithm 4, 5.

	Parameters

	
	note_info (structured array, Part or PerformedPart) – Note information as a Part or PerformedPart instances or
as a structured array. If it is a structured array, it has to
contain the fields generated by the note_array properties
of Part or PerformedPart objects. If the array contains
onset and duration information of both score and performance,
(e.g., containing both onset_beat and onset_sec), the score
information will be preferred.

	method ({'ps13s1'}) – Pitch spelling algorithm. More methods will be added.

	**kwargs – Keyword arguments for the algorithm specified in method.

	Returns

	spelling – Array with pitch spellings. The fields are ‘step’, ‘alter’ and
‘octave’

	Return type

	structured array

References

	4

	Meredith, D. (2006). “The ps13 Pitch Spelling Algorithm”. Journal
of New Music Research, 35(2):121.

	5

	Meredith, D. (2019). “RecurSIA-RRT: Recursive translatable
point-set pattern discovery with removal of redundant translators”.
12th International Workshop on Machine Learning and Music. Würzburg,
Germany.

	
partitura.musicanalysis.estimate_tonaltension(note_info, ws=1.0, ss='onset', scale_factor=0.09249316305671976, w=array([0.516, 0.315, 0.168]), alpha=0.75, beta=0.75)

	Compute tonal tension ribbons defined in 1

	Parameters

	
	note_info (structured array, Part or PerformedPart) – Note information as a Part or PerformedPart instances or
as a structured array. If it is a structured array, it has to
contain the fields generated by the note_array properties
of Part or PerformedPart objects. If the array contains
onset and duration information of both score and performance,
(e.g., containing both onset_beat and onset_sec), the score
information will be preferred. Furthermore, this method requires
pitch spelling and key signature information. If a structured note
array is provided as input, this information can be optionally
provided in fields step, alter, ks_fifths and ks_mode.
If these fields are not found in the input structured array,
they will be estimated using the key and pitch spelling estimation
methods from partitura.musicanalysis.estimate_key and
and partitura.musicanalysis.estimate_spelling, respectively.

	ws ({int, float, np.array}, optional) – Window size for computing the tonal tension. If a number, it determines
the size of the window centered at each specified score position (see
ss below). If a numpy array, a 2D array of shape (len(ss), 2)
specifying the left and right distance from each score position in
ss. Default is 1 beat.

	ss ({float, int, np.array, 'onset'}, optional.) – Step size or score position for computing the tonal tension features.
If a number, this parameter determines the size of the step (in beats)
starting from the first score position. If an array, it specifies the
score positions at which the tonal tension is estimated. If ‘onset’,
it computes the tension at each unique score position (i.e., all notes
in a chord have the same score position). Default is ‘onset’.

	scale_factor (float) – A multiplicative scaling factor.

	w (np.ndarray) – Weights for the chords

	alpha (float) – Alpha.

	beta (float) – Beta.

	Returns

	tonal_tension – Array containing the tonal tension features. It contains the fields
cloud_diameter, cloud_momentum, tensile_strain and onset.

	Return type

	structured array

References

	1

	D. Herremans and E. Chew (2016) Tension ribbons: Quantifying and
visualising tonal tension. Proceedings of the Second International
Conference on Technologies for Music Notation and Representation
(TENOR), Cambridge, UK.

partitura.utils

	
partitura.utils.key_name_to_fifths_mode(name)

	Return the number of sharps or flats and the mode of a key
signature name. A negative number denotes the number of flats
(i.e. -3 means three flats), and a positive number the number of
sharps. The mode is specified as ‘major’ or ‘minor’.

	Parameters

	name ({"A", "A#m", "Ab", "Abm", "Am", "B", "Bb", "Bbm", "Bm", "C","C#", "C#m", "Cb", "Cm", "D", "D#m", "Db", "Dm", "E", "Eb","Ebm", "Em", "F", "F#", "F#m", "Fm", "G", "G#m", "Gb", "Gm"}) – Name of the key signature

	Returns

	Tuple containing the number of fifths and the mode

	Return type

	(int, str)

Examples

>>> key_name_to_fifths_mode('Am')
(0, 'minor')
>>> key_name_to_fifths_mode('C')
(0, 'major')
>>> key_name_to_fifths_mode('A')
(3, 'major')

	
partitura.utils.fifths_mode_to_key_name(fifths, mode=None)

	Return the key signature name corresponding to a number of sharps
or flats and a mode. A negative value for fifths denotes the
number of flats (i.e. -3 means three flats), and a positive
number the number of sharps. The mode is specified as ‘major’
or ‘minor’. If mode is None, the key is assumed to be major.

	Parameters

	
	fifths (int) – Number of fifths

	mode ({'major', 'minor', None, -1, 1}) – Mode of the key signature

	Returns

	The name of the key signature, e.g. ‘Am’

	Return type

	str

Examples

>>> fifths_mode_to_key_name(0, 'minor')
'Am'
>>> fifths_mode_to_key_name(0, 'major')
'C'
>>> fifths_mode_to_key_name(3, 'major')
'A'
>>> fifths_mode_to_key_name(-1, 1)
'F'

	
partitura.utils.key_mode_to_int(mode)

	Return the mode of a key as an integer (1 for major and -1 for
minor).

	Parameters

	mode ({'major', 'minor', None, 1, -1}) – Mode of the key

	Returns

	Integer representation of the mode.

	Return type

	int

	
partitura.utils.compute_pianoroll(note_info, time_unit='auto', time_div='auto', onset_only=False, note_separation=False, pitch_margin=-1, time_margin=0, return_idxs=False, piano_range=False, remove_drums=True)

	Computes a piano roll from a structured note array (as
generated by the note_array methods in partitura.score.Part
and partitura.performance.PerformedPart instances).

	Parameters

	
	note_info (structured array, Part, PartGroup, PerformedPart) – Note information

	time_unit (('auto', 'beat', 'quarter', 'div', 'second')) –

	time_div (int, optional) – How many sub-divisions for each time unit (beats for a score
or seconds for a performance. See is_performance below).

	onset_only (bool, optional) – If True, code only the onsets of the notes, otherwise code
onset and duration.

	pitch_margin (int, optional) – If pitch_margin > -1, the resulting array will have
pitch_margin empty rows above and below the highest and
lowest pitches, respectively; if pitch_margin == -1, the
resulting pianoroll will have span the fixed pitch range
between (and including) 1 and 127.

	time_margin (int, optional) – The resulting array will have time_margin * time_div empty
columns before and after the piano roll

	return_idxs (bool, optional) – If True, return the indices (i.e., the coordinates) of each
note in the piano roll.

	piano_range (bool, optional) – If True, the pitch axis of the piano roll is in piano keys
instead of MIDI note numbers (and there are only 88 pitches).
This is equivalent as slicing piano_range_pianoroll =
pianoroll[21:109, :].

	remove_drums (bool, optional) – If True, removes the drum track (i.e., channel 9) from the
notes to be considered in the piano roll. This option is only
relevant for piano rolls generated from a PerformedPart.
Default is True.

	Returns

	
	pianoroll (scipy.sparse.csr_matrix) – A sparse int matrix of size representing the pianoroll; The
first dimension is pitch, the second is time; The sizes of the
dimensions vary with the parameters pitch_margin,
time_margin, and time_div

	pr_idx (ndarray) – Indices of the onsets and offsets of the notes in the piano
roll (in the same order as the input note_array). This is only
returned if return_idxs is True.

Examples

>>> import numpy as np
>>> from partitura.utils import compute_pianoroll
>>> note_array = np.array([(60, 0, 1)], dtype=[('pitch', 'i4'), ('onset_beat', 'f4'), ('duration_beat', 'f4')])
>>> pr = compute_pianoroll(note_array, pitch_margin=2, time_div=2)
>>> pr.toarray()
array([[0, 0],
 [0, 0],
 [1, 1],
 [0, 0],
 [0, 0]])

Notes

The default values in this function assume that the input
note_array represents a score.

	
partitura.utils.pianoroll_to_notearray(pianoroll, time_div=8, time_unit='sec')

	Extract a structured note array from a piano roll.

For now, the structured note array is considered a
“performance”.

	Parameters

	
	pianoroll (array-like) – 2D array containing a piano roll. The first dimension is
pitch, and the second is time. The value of each “pixel” in
the piano roll is considered to be the MIDI velocity, and it
is supposed to be between 0 and 127.

	time_div (int) – How many sub-divisions for each time unit (see
notearray_to_pianoroll).

	time_unit ({'beat', 'quarter', 'div', 'sec'}) – time unit of the output note array.

	Returns

	Structured array with pitch, onset, duration and velocity
fields.

	Return type

	np.ndarray

Notes

Please note that all non-zero pixels will contribute to a note.
For the case of piano rolls with continuous values between 0 and 1
(as might be the case of those piano rolls produced using
probabilistic/generative models), we recomend to either 1) hard-
threshold the piano roll to have only 0s (note-off) or 1s (note-
on) or, 2) soft-threshold the notes (values below a certain
threshold are considered as not active and scale the active notes
to lie between 1 and 127).

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 partitura	

 	
 	
 partitura.musicanalysis	

 	
 	
 partitura.performance	

 	
 	
 partitura.score	

 	
 	
 partitura.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	add() (partitura.score.Part method)

 	add_ending_object() (partitura.score.TimePoint method)

 	add_measures() (in module partitura.score)

 	
 	add_starting_object() (partitura.score.TimePoint method)

 	alter_sign (partitura.score.Note attribute)

 	ArticulationDirection (class in partitura.score)

B

 	
 	Barline (class in partitura.score)

 	Beam (class in partitura.score)

 	beat_map (partitura.score.Part attribute)

 	
 	beat_type (partitura.score.TimeSignature attribute)

 	beats (partitura.score.TimeSignature attribute)

 	bpm (partitura.score.Tempo attribute)

C

 	
 	children (partitura.score.PartGroup attribute)

 	chromatic (partitura.score.Transposition attribute)

 	Clef (class in partitura.score)

 	compute_pianoroll() (in module partitura.utils)

 	
 	ConstantArticulationDirection (class in partitura.score)

 	ConstantDirection (class in partitura.score)

 	ConstantLoudnessDirection (class in partitura.score)

 	ConstantTempoDirection (class in partitura.score)

 	controls (partitura.performance.PerformedPart attribute)

D

 	
 	DaCapo (class in partitura.score)

 	DecreasingLoudnessDirection (class in partitura.score)

 	DecreasingTempoDirection (class in partitura.score)

 	diatonic (partitura.score.Transposition attribute)

 	Direction (class in partitura.score)

 	
 	duration (partitura.score.TimedObject attribute)

 	duration_from_symbolic (partitura.score.GenericNote attribute)

 	duration_tied (partitura.score.GenericNote attribute)

 	DynamicDirection (class in partitura.score)

 	DynamicLoudnessDirection (class in partitura.score)

 	DynamicTempoDirection (class in partitura.score)

E

 	
 	end (partitura.score.TimedObject attribute)

 	end_note (partitura.score.Slur attribute)

 	(partitura.score.Tuplet attribute)

 	end_tied (partitura.score.GenericNote attribute)

 	Ending (class in partitura.score)

 	ending_objects (partitura.score.TimePoint attribute)

 	
 	estimate_key() (in module partitura.musicanalysis)

 	estimate_spelling() (in module partitura.musicanalysis)

 	estimate_tonaltension() (in module partitura.musicanalysis)

 	estimate_voices() (in module partitura.musicanalysis)

 	EXAMPLE_MIDI (in module partitura)

 	EXAMPLE_MUSICXML (in module partitura)

 	expand_grace_notes() (in module partitura.score)

F

 	
 	Fermata (class in partitura.score)

 	fifths (partitura.score.KeySignature attribute)

 	fifths_mode_to_key_name() (in module partitura.utils)

 	
 	find_tuplets() (in module partitura.score)

 	Fine (class in partitura.score)

 	first_point (partitura.score.Part attribute)

 	from_note_array() (partitura.performance.PerformedPart class method)

G

 	
 	GenericNote (class in partitura.score)

 	get_or_add_point() (partitura.score.Part method)

 	get_point() (partitura.score.Part method)

 	
 	grace_seq_len (partitura.score.GraceNote attribute)

 	GraceNote (class in partitura.score)

 	group_symbol (partitura.score.PartGroup attribute)

I

 	
 	id (partitura.performance.PerformedPart attribute)

 	(partitura.score.Part attribute)

 	ImpulsiveDirection (class in partitura.score)

 	ImpulsiveLoudnessDirection (class in partitura.score)

 	IncreasingLoudnessDirection (class in partitura.score)

 	IncreasingTempoDirection (class in partitura.score)

 	inv_beat_map (partitura.score.Part attribute)

 	inv_quarter_map (partitura.score.Part attribute)

 	InvalidTimePointException

 	
 	iter_all() (partitura.score.Part method)

 	iter_chord() (partitura.score.GenericNote method)

 	iter_ending() (partitura.score.TimePoint method)

 	iter_grace_seq() (partitura.score.GraceNote method)

 	iter_next() (partitura.score.TimePoint method)

 	iter_parts() (in module partitura.score)

 	iter_prev() (partitura.score.TimePoint method)

 	iter_starting() (partitura.score.TimePoint method)

 	iter_unfolded_parts() (in module partitura.score)

K

 	
 	key_mode_to_int() (in module partitura.utils)

 	key_name_to_fifths_mode() (in module partitura.utils)

 	
 	key_signature_map (partitura.score.Part attribute)

 	KeySignature (class in partitura.score)

L

 	
 	last_point (partitura.score.Part attribute)

 	line (partitura.score.Clef attribute)

 	load_match() (in module partitura)

 	load_musicxml() (in module partitura)

 	load_nakamuracorresp() (in module partitura)

 	
 	load_nakamuramatch() (in module partitura)

 	load_performance_midi() (in module partitura)

 	load_score_midi() (in module partitura)

 	load_via_musescore() (in module partitura)

 	LoudnessDirection (class in partitura.score)

M

 	
 	main_note (partitura.score.GraceNote attribute)

 	make_score_variants() (in module partitura.score)

 	Measure (class in partitura.score)

 	
 	microseconds_per_quarter (partitura.score.Tempo attribute)

 	midi_pitch (partitura.score.Note attribute)

 	mode (partitura.score.KeySignature attribute)

 	musicxml_to_notearray() (in module partitura)

N

 	
 	name (partitura.score.KeySignature attribute)

 	(partitura.score.PartGroup attribute)

 	next (partitura.score.TimePoint attribute)

 	Note (class in partitura.score)

 	note_array (partitura.performance.PerformedPart attribute)

 	(partitura.score.PartGroup attribute)

 	notes (partitura.performance.PerformedPart attribute)

 	(partitura.score.Part attribute)

 	
 	notes_tied (partitura.score.Part attribute)

 	nr (partitura.score.Clef attribute)

 	number (partitura.score.Ending attribute)

 	(partitura.score.Measure attribute)

 	(partitura.score.Page attribute)

 	(partitura.score.PartGroup attribute)

 	(partitura.score.System attribute)

O

 	
 	octave_change (partitura.score.Clef attribute)

P

 	
 	Page (class in partitura.score)

 	page (partitura.score.Measure attribute)

 	parent (partitura.score.PartGroup attribute)

 	Part (class in partitura.score)

 	part_abbreviation (partitura.score.Part attribute)

 	part_name (partitura.performance.PerformedPart attribute)

 	(partitura.score.Part attribute)

 	PartGroup (class in partitura.score)

 	partitura (module)

 	partitura.musicanalysis (module)

 	
 	partitura.performance (module)

 	partitura.score (module)

 	partitura.utils (module)

 	PedalDirection (class in partitura.score)

 	PerformedPart (class in partitura.performance)

 	pianoroll_to_notearray() (in module partitura.utils)

 	pretty() (partitura.score.Part method)

 	(partitura.score.PartGroup method)

 	prev (partitura.score.TimePoint attribute)

 	programs (partitura.performance.PerformedPart attribute)

Q

 	
 	quarter (partitura.score.TimePoint attribute)

 	quarter_duration_map (partitura.score.Part attribute)

 	
 	quarter_durations() (partitura.score.Part method)

 	quarter_map (partitura.score.Part attribute)

R

 	
 	ref (partitura.score.Fermata attribute)

 	remove() (partitura.score.Part method)

 	remove_ending_object() (partitura.score.TimePoint method)

 	remove_grace_notes() (in module partitura.score)

 	remove_starting_object() (partitura.score.TimePoint method)

 	
 	render() (in module partitura)

 	Repeat (class in partitura.score)

 	repeats_to_start_end() (in module partitura.score)

 	ResetTempoDirection (class in partitura.score)

 	Rest (class in partitura.score)

S

 	
 	sanitize_part() (in module partitura.score)

 	save_match() (in module partitura)

 	save_musicxml() (in module partitura)

 	save_performance_midi() (in module partitura)

 	save_score_midi() (in module partitura)

 	set_end_times() (in module partitura.score)

 	set_quarter_duration() (partitura.score.Part method)

 	sign (partitura.score.Clef attribute)

 	Slur (class in partitura.score)

 	
 	staff (partitura.score.Words attribute)

 	start (partitura.score.TimedObject attribute)

 	start_note (partitura.score.Slur attribute)

 	(partitura.score.Tuplet attribute)

 	starting_objects (partitura.score.TimePoint attribute)

 	sustain_pedal_threshold (partitura.performance.PerformedPart attribute)

 	SustainPedalDirection (class in partitura.score)

 	symbolic_duration (partitura.score.GenericNote attribute)

 	System (class in partitura.score)

 	system (partitura.score.Measure attribute)

T

 	
 	t (partitura.score.TimePoint attribute)

 	Tempo (class in partitura.score)

 	TempoDirection (class in partitura.score)

 	text (partitura.score.Words attribute)

 	tie_next_notes (partitura.score.GenericNote attribute)

 	tie_notes() (in module partitura.score)

 	
 	tie_prev_notes (partitura.score.GenericNote attribute)

 	time_signature_map (partitura.score.Part attribute)

 	TimedObject (class in partitura.score)

 	TimePoint (class in partitura.score)

 	TimeSignature (class in partitura.score)

 	Transposition (class in partitura.score)

 	Tuplet (class in partitura.score)

U

 	
 	unfold_part_alignment() (in module partitura.score)

 	
 	unfold_part_maximal() (in module partitura.score)

 	unit (partitura.score.Tempo attribute)

W

 	
 	Words (class in partitura.score)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/score_example_2.png

_static/ajax-loader.gif

_images/score_example.png
Piano

_images/score_example_1.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Partitura documentation

 		
 Introduction

 		
 Supported file types

 		
 Conceptual Overview

 		
 Representing score information

 		
 Score vs. performance

 		
 Relation to music21

 		
 Usage

 		
 Quick start: Reading note information from a MIDI file

 		
 Importing MusicXML

 		
 Displaying the typeset part

 		
 Exporting a score to MusicXML

 		
 Viewing the contents of a score

 		
 Extracting note information from a Part

 		
 Iterating over arbitrary musical objects

 		
 Creating a musical score by hand

 		
 Adding measures

 		
 Splitting up notes using ties

 		
 Removing elements

 		
 Importing MIDI files

 		
 Music Analysis

 		
 Key Estimation

 		
 Pitch Spelling

 		
 Voice Estimation

 		
 Tonal Tension

 		
 Index

 		
 partitura

 		
 partitura.score

 		
 partitura.performance

 		
 partitura.musicanalysis

 		
 partitura.utils

_static/up.png

